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Robust Ocean Acoustic Localization With
Sparse Bayesian Learning

Kay L. Gemba , Santosh Nannuru , and Peter Gerstoft , Senior Member, IEEE

Abstract—Matched field processing (MFP) compares the mea-
sures to the modeled pressure fields received at an array of sen-
sors to localize a source in an ocean waveguide. Typically, there
are only a few sources when compared to the number of candi-
date source locations or range-depth cells. We use sparse Bayesian
learning (SBL) to learn a common sparsity profile corresponding
to the location of present sources. SBL performance is compared
to traditional processing in simulations and using experimental
ocean acoustic data. Specifically, we localize a quiet source in the
presence of a surface interferer in a shallow water environment.
This multi-frequency scenario requires adaptive processing and
includes modest environmental and sensor position mismatch in
the MFP model. The noise process changes likely with time and is
modeled as a non-stationary Gaussian process, meaning that the
noise variance changes across snapshots. The adaptive SBL algo-
rithm models the complex source amplitudes as random quantities,
providing robustness to amplitude and phase errors in the model.
This is demonstrated with experimental data, where SBL exhibits
improved source localization performance when compared to the
white noise gain constraint (–3 dB) and Bartlett processors.

Index Terms—Robust beamforming, sparse Bayesian learning,
matched field processing, non-stationary noise, sparse reconstruc-
tion, array processing.

I. INTRODUCTION

W ITH long observation times weak signals can be
extracted in a noisy environment. Most analytic treat-

ments analyze these cases assuming Gaussian noise with con-
stant variance. However, for long observation times, the noise
process though is likely to change with time. This means that
the noise variance is non-stationary in time (taken across snap-
shots), and/or even across sensors. Modeling of these nuisance
parameters in the processing is useful to improve the signal
estimate.

Accounting for the noise variation is certainly useful in statis-
tical signal processing. For example, the noise has been assumed
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to vary spatially [1] and spatiotemporally [2]. This has lead to
so-called lucky imaging in astronomy [3] or lucky ranging in
ocean acoustics [4], where only the measurements giving good
imaging results are used. In contrast, we use all measurements
either by estimating the noise per snapshot or by normalizing the
data on a per snapshot basis, demonstrated here for the matched
field processing application.

Matched field processing (MFP) is a generalized beamform-
ing method which matches received array data to a dictionary
of replica vectors to localize one or several sources [5]–[10].
Source localization parameters of interest include both range
and depth in an ocean acoustic waveguide. Modeling the trans-
fer function (e.g., the propagating modes) between a candidate
source position and elements deployed as a vertical line array
(VLA) requires regional knowledge of environmental param-
eters such as water column sound speed, seabed depth, and
geoacoustic parameters.

On the one hand, field complexity is desirable because it in-
creases localization ability [11, p.86], [12, p.572]. On the other
hand, field diversity increases model complexity, often beyond
our knowledge for dynamic ocean environments. In such situa-
tions, one may choose to model a range-dependent waveguide as
range-independent. For example, bottom depth or sound speed
change in range and are approximated with a flat bottom and an
average sound speed. Further, localization ambiguity decreases
if multiple frequencies (below 1 kHz) are processed. Since the
source function (i.e., phase between frequencies) is not know
[13], localization results for each center frequency usually are
combined incoherently. In contrast, it is still possible to estimate
range [14], depth [15] or source bearing [16] independently
without environmental information.

Traditionally, the Bartlett processor [17] is used as a point of
departure to estimate MFP source location. High resolution lo-
calization using the minimum variance distortionless response
(MVDR) processor is not practical due to encountered (e.g.,
environmental) mismatch (through-the-sensor environmental
characterization are an active area of research [18]–[20]). The
adaptive white noise gain constraint [21] (WNGC) processor is
more versatile because it can adjust its behavior (thus resolution
and sidelobe suppression) from Bartlett to MVDR [22].

The MFP localization problem can be reformulated as an un-
derdetermined system of linear equations and source parameters
are estimated using compressive sensing (CS) [23]–[26]. When
implemented using basis pursuit (BP), CS possesses proper-
ties similar to an adaptive processor and offers localization im-
provement compared to the WNGC processor for single- and
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multiple-sources [27]. CS has demonstrated improved perfor-
mance in the presence of perturbations or mismatch [27]–[29].

However, CS implemented using the non-greedy BP method
has a significant shortcoming in data applications: for K un-
known sources, the number of sparse solutions Ks required to
localize all sources is Ks ≥ K [27]. Additional ambiguous so-
lutions are due to mismatch between the observed field at the
VLA and the modeled replica vector.

An alternative CS implementation, sparse Bayesian learning
(SBL) [30]–[33], offers relief to this shortcoming for multi-
frequency MFP [34]. SBL has the advantage that it determines
sparsity automatically. Here, SBL learns a sparsity profile (com-
mon across snapshots and frequencies) corresponding to the
location of present sources.

Following the CS approach, SBL also reformulates the pa-
rameter estimation problem as an underdetermined linear prob-
lem. The variables are treated as Gaussian random vectors and
Bayesian evidence maximization is performed to obtain a sparse
solution [32]. SBL can be interpreted as iterative, re-weighted
BP [35] and exhibits similar sparse signal recovery compared
to the BP method [36]. BP’s execution time increases quadrat-
ically with number of snapshots while SBL is nearly snapshot
independent [33], [34]. SBL can be viewed as a stochastic max-
imum likelihood approach, it has the same objective function as
LIKES [37].

This paper compares processor localization performance us-
ing simulated and SWellEx-96 data subject to environmental and
sensor location mismatch. Further, we implement SBL with two
noise models for scenarios with stationary and non-stationary
temporal noise statistics. Previously [34], we compared SBL to
the non-adaptive Bartlett and adaptive WNGC processors in a
two-source localization scenario.

The two-source scenario required adaptive processing to iden-
tify the location of a weaker source in the presence of a stronger
source. Further, robust adaptive processing is desirable because
environmental parameters, sensor locations, or the noise process
are generally unknown. Robust to mismatch means the beam-
former is less sensitive to small amplitude or phase errors [21].

In this manuscript, using a similar two-source scenario, we
process another event than [34] and localize the quiet submerged
source in the presence of an uncontrolled, broadband surface
interferer (a passing ship).

A. Matched Field Problem Formulation

For the lth observation snapshot, we assume the linear model

y =
∑

K

a(θK )xK + n. (1)

The snapshot yl ∈ CN consists of a vector of Fourier coeffi-
cients at a single frequency f obtained via a fast Fourier trans-
form (FFT) of the lth data segment from N receivers. The replica
vector a(θ) ∈ CN is the Green’s function (computed with a nor-
mal mode code) for a candidate source position θ (i.e., range
and depth) to each receiver. The complex source amplitude for
the Kth source is x. Further, nl ∈ CN is additive zero-mean cir-
cularly symmetric complex Gaussian noise, which is generated

from a Gaussian process nl ∼ CN(nl ;0,Σn l
). Due to the cir-

cular symmetry of the noise the phase is uniformly distributed.
To localize a source, the waveguide is discretitized to Md

depths and Mr ranges, for M = Md × Mr candidate source
positions. The dictionary A = [a1 , . . . ,aM ] ∈ CN ×M contains
all M replica vectors as columns.

We observe narrowband waves on N sensors for L snapshots
Y = [y1 , . . . ,yL ] ∈ CN ×L . Let X = [x1 , . . . ,xL ] ∈ CM ×L

be the unknown complex source amplitudes for a total of M
range-depth positions. Only a few sources K are typically
present in practical applications (hence K � M ). The source
amplitudes xK in (1) form the non-zero entries of the sparse
vector xl . These sources are assumed to be spatially stationary
across snapshots. A linear regression model relates the array
data Y to the source amplitudes X as

Y = AX + N. (2)

This system of equations typically is underdetermined (N �
M ). The noise N = [n1 , . . . ,nL ] ∈ CN ×L is in general non-
stationary across snapshots.

Under these assumptions, (2) is solved using �2 regularization
leading to Bartlett and WNGC processors (Sec. II). Using �1
regularization leads to the sparsity promoting LASSO solution,
briefly discussed in Sec. III-C. The SBL approach to solving (2)
in a Bayesian framework is the focus of this paper and discussed
in Sec. III.

B. Noise Model

The noise is modeled as a diagonal covariance matrix, pa-
rameterized as

Σn l
= σ2

l I, (3)

where I is the identity matrix. Note that the covariance matrices
Σn l

are varying over the snapshot index l = 1, . . . , L and σl ∈
R0+ where R0+ denotes non-negative real numbers.

We consider two special cases for the a priori knowledge on
the noise covariance model (3) as follows:

Case I: We assume wide-sense stationarity of the noise in
space and time: σ2

l = σ2 ,∀l. This is a commonly
used noise model, i.e. stationary white noise.

Case II: We assume wide-sense stationarity of the noise in
space only. The noise variance for all sensor elements
is equal across the array and it varies over snapshots,
i.e., non-stationary white noise.

A Case III [2], in which the noise statistics vary across both
time and space, was considered. Results did not indicate a sig-
nificant improvement over Case II for this data set and are
therefore not presented. However, Case III may be of interest
when sensors are deployed close to the sea surface [38], [39].
While focusing on narrowband (single frequency) observations,
we emphasize that the noise varies across frequencies.

C. Data Normalization

An alternate approach to model non-stationary noise explic-
itly as in Sec. I-B is to perform snapshot normalization. Let
us introduce the factorization Σ−1

n l
= WH

l Wl , where Wl is a
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square and non-singular matrix. For our particular setup, we
have Wl = σ−1

l I. The matrix Wl is useful for normalizing
the sensor data. The corresponding normalized sensor data and
noise are

ỹl = Wlyl , ñl = Wlnl . (4)

For known diagonal noise covariance Σn l
the above means

we have to normalize (1) with σl as then the resulting noise
satisfies ñl ∼ CN(ñl ;0, I), and thus all entries are identically
distributed.

In practice, we do not have access to the true noise variances
σl . For low SNR scenario, i.e. when the noise nl is significantly
larger than the signal a(θ)xl , we can approximate the data to be
equal to the noise leading to the approximation σl ≈ ‖yl‖2 . We
consider two cases:

Wl ≈
⎧
⎨

⎩

√
N L

‖Y‖F
I for Case I

√
N

‖y l ‖2
I for Case II,

(5)

leading to

ỹl ≈
⎧
⎨

⎩

√
N L

‖Y‖F
yl for Case I

√
N

‖y l ‖2
yl for Case II,

(6)

where Y = [y1 , . . . ,yL ] is the matrix of all data snapshots and
‖Y‖F denotes its Frobenius norm. We refer to Case I as ‘not
normalized’ and Case II as ‘normalized’ since ỹl has unit norm.

II. BARTLETT AND WNGC PROCESSORS

Bartlett is a spatial matched-filter processor which matches
replica vectors a(θ) to the data y (1):

PB (θ) = aH (θ)Sya(θ), (7)

where the superscript H denotes the Hermitian operator and
the sample covariance matrix (SCM) Sy ∈ CN ×N is obtained
using L snapshots:

Sy =
1
L

L∑

l=1

ylyH
l . (8)

PB (θ) denotes the Bartlett power at position θ using nor-
malized replicas vectors (i.e., ||a(θ)||2 = 1). Processor output
power is plotted for for a total of M candidate positions θ,
conventionally arranged in range and depth and referred to as
an ambiguity surface. While Bartlett does not invert Sy and
thus does not have a minimum number of required snapshots, it
suffers from high sidelobes. Sidelobe suppression is important
if a combination of sources (or a combination of sources and
interferers) are present.

The WNGC processor Pwngc discriminates against other
sources/interferers while offering a degree of robustness in fre-
quently encountered mismatch scenarios. The WNGC is consid-
ered versatile because of its ability to adjust its behavior (thus
resolution and sidelobe suppression) from Bartlett to MVDR
[22] at the expense of inverting Sy (8). To have Sy invertible,
we require L ≥ N (diagonal loading of Sy can mitigate this

requirement). The WNGC processor is:

Pwngc(θ) = aH
w (θ)Syaw (θ),

where aw (θ) =
(Sy + εI)−1a(θ)

aH (θ)(Sy + εI)−1a(θ)
. (9)

The adaptive weights aw (θ) correspond to diagonally loaded
MVDR weights and are obtained by solving:

min
aw

aH
w (θ)Sy aw (θ) subject to

aH
w (θ)a(θ) = 1,
∣∣aH

w (θ)aw (θ)
∣∣−1 ≥ δ2 , (10)

for each replica vector at position θ. The constraining value δ2

imposes a gain constraint on the adaptive weights and the white
noise gain constraint Gwngc such that

δ2 ≤ Gwng =
∣∣aH

w (θ)aw (θ)
∣∣−1

< N, (11)

which in practice is normalized and expressed as
10 log10(δ2/N) ≤ 0 dB. The selected constraining value δ2 de-
termines ε in (9) and hence WNGC output power.

An initialization value ε0 for this optimization is subject to
the inequality constraint and is selected conservatively to en-
sure that

∣∣aH
w (θ)aw (θ)

∣∣−1
ε0

< δ2 . Since ε(θ) can span many
orders of magnitude, ε is parameterized on a dB scale. The
search uses a singular value decomposition of Sy with ε0 =
10 log10(tr[Sy ]/N) − 30, where tr[·] denotes the trace of a ma-
trix. The iterative algorithm converges when a selected con-
straint is satisfied within ±0.1 dB. Thus, Pwngc(θ) denotes the
WNGC power at position θ for a selected (white noise gain)
constraint, which frequently falls within [–6 –2] dB.

To localize a source, Eqs. (7) and (9) are evaluated at M range-
depth candidate positions θ. Computed ambiguity surfaces for
F processed frequencies are averaged:

PF (θ) =
F∑

f =1

P (θ, f). (12)

Processing additional frequencies improves source localization
performance for a weaker source in the presence of a stronger
source and environmental or model mismatch. The mainlobes
are in the same locations while the sidelobes are not. It is de-
sirable that these frequencies span multiple octaves which may
increase the sidelobe diversity in (12).

III. SPARSE BAYESIAN LEARNING

In this section we discuss our SBL approach and develop a
multi-frequency solution to (2) from a Bayesian point of view.
Starting from (2), the complex source amplitudes xl and the
noise nl are assumed independent with each other and across
snapshots. The data likelihood is then given by

p(Y|X) =
L∏

l=1

p(yl |xl) =
L∏

l=1

CN(yl ;Axl ,Σn l
). (13)
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A. Prior on the Sources

We assume that the complex source amplitudes xml are in-
dependent both across snapshots (i.e. index l) and across space
(i.e. index m) and follow a zero-mean circularly symmetric
complex Gaussian distribution with space-dependent variance
γm , m = 1, . . . , M ,

p(xml ; γm ) =

{
δ(xml), for γm = 0

1
πγm

e−|xm l |2 /γm , for γm > 0
, (14)

p(X;γ) =
L∏

l=1

M∏

m=1

p(xml ; γm ) =
L∏

l=1

CN(xl ;0,Γ), (15)

i.e., the source vector xl at each snapshot l ∈ {1, . . . , L} is
multivariate Gaussian with covariance matrix,

Γ = diag(γ) = E[xlxH
l ;γ], γ = [γ1 , . . . , γM ]. (16)

When the variance γm = 0, then xml = 0 with probability 1
implying that there is no source at the range-depth position
corresponding to index m. Assuming the sources to be stationary
across snapshots, the sparsity profile (i.e. the location of non-
zero entries in xl) is the same across snapshots. The sparsity
of the model is thus controlled with the parameter γ, and the
working set M is equivalently

M = {m ∈ N|γm > 0}. (17)

The covariance matrix Γ can potentially be singular as
rank(Γ) = card(M) = K ≤ M . Since Γ is a diagonal ma-
trix, its rank is equal to the number of non-zero diagonal entries
(and there are K such entries each of which correspond to a
true source). The SBL algorithm ultimately estimates γ rather
than the complex source amplitudes X. This amounts to a sig-
nificant reduction of the degrees of freedom in the problem and
potentially causes less variance in the estimate.

B. Stochastic Maximum Likelihood

Here, we derive the well-known stochastic maximum likeli-
hood function [40]–[42]. Given the linear model (2) with Gaus-
sian likelihood (13) and prior (15) the array data Y is Gaussian
for each snapshot l with the covariance Σy l

given by

Σy l
= E[ylyH

l ] = Σn l
+ AγAH . (18)

The probability density function of Y is thus given by

p(Y) =
L∏

l=1

CN(yl ;0,Σy l
) =

L∏

l=1

e−yH
l Σ−1

y l
y l

πN detΣy l

. (19)

The L-snapshot log-likelihood for estimating γ and σ1:L =
[σ1 , . . . , σL ] is

log p(Y;γ, σ1:L ) ∝ −
L∑

l=1

(
yH

l Σ−1
y l

yl + log detΣy l

)
. (20)

This likelihood function is identical to the Type II likelihood
function (evidence) in standard SBL [31] which is obtained
by treating γ as a hyperparameter similar to LIKES [37]. The

parameter estimates γ̂ and σ̂1:L are obtained by maximizing the
log-likelihood, leading to

(γ̂, σ̂1:L ) = arg max
γ≥0, σ1 :L ∈RL

0 +

log p(Y;γ, σ1:L ). (21)

C. LASSO Versus SBL

Within a Bayesian framework, both LASSO and SBL use
the linear model (2) with complex zero-mean Gaussian ran-
dom noise but they differ in the modeling of the source matrix
X. The LASSO approach assumes a priori that X is random
with uniformly i.i.d. distributed phase and Laplace-like prior
amplitudes,

p(X) = p(x�2 ) ∝ exp(−‖x�2 ‖1/ν), (22)

[x�2 ]n =

(
L∑

l=1

|[xl ]n |2
)1/2

. (23)

Thus only the summed amplitudes (23) are Laplacian. The el-
ements in X are unknown and must be estimated. The LASSO
approach uses the conditional likelihood (Type I) for p(Y|X)
and applies Bayes rule with the prior p(X) giving the MAP
estimate

X̂ = arg max p(Y|X)p(X)

= arg min
X∈CN ×L

‖Y − AX‖2
F + μ‖x�2 ‖1 . (24)

The approach in (24) estimates the realization of xl for each
snapshot l. The number of parameters to be estimated for the
LASSO approach grow linearly with the number of snapshots.
This differs from our SBL approach, which estimates the source
power/variance γ across all snapshots.

D. Source Power Estimation Using SBL

SBL follows the stochastic maximum likelihood approach
(21) to estimate source powers (i.e. γm ). Our derivation follows
[33], [43]. We impose the diagonal structure Γ = diag(γ), in
agreement with (15), to form derivatives of (20) with respect to
the diagonal elements γm . Using

∂Σ−1
y l

∂γm
= −Σ−1

y l

∂Σy l

∂γm
Σ−1

y l
= −Σ−1

y l
amaH

mΣ−1
y l

, (25)

∂ log det(Σy l
)

∂γm
= tr

[
Σ−1

y l

∂Σy l

∂γm

]
= aH

mΣ−1
y l

am , (26)

the derivative of (20) is formulated as

∂ log p(Y;γ, σ1:L )
∂γm

=
L∑

l=1

(
yH

l Σ−1
y l

amaH
mΣ−1

y l
yl−aH

mΣ−1
y l

am

)

=
L∑

l=1

|yH
l Σ−1

y l
am |2 −

L∑

l=1

aH
mΣ−1

y l
am .

(27)

In order to solve the stochastic maximum likelihood equation
(21), we impose the necessary condition ∂ log p(Y ;γ ,σ1 :L )

∂γm
= 0
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in (27), giving

L∑

l=1

|yH
l Σ−1

y l
am |2 =

L∑

l=1

aH
mΣ−1

y l
am . (28)

We are not aware of any closed form solution when solving (28)
for γm and formulate a fixed point update rule:

γm

L∑

l=1

|yH
l Σ−1

y l
am |2 = γm

L∑

l=1

aH
mΣ−1

y l
am . (29)

Assuming γm and Σy l
are known from previous iterations or

initialization, we rewrite (29) to obtain a fixed point iteration for
γm (with similarities to [30]–[33], [43]):

γnew
m = γold

m

(∑L
l=1 |yH

l Σ−1
y l

am |2
∑L

l=1 aH
mΣ−1

y l
am

)
. (30)

This fixed point iteration is not guaranteed to converge [31] and
the number of iterations required for a reasonable convergence
parameter (see SBL pseudo-code in Sec. III-G) is typically large
(on the order of 1000).

For a single snapshot, the numerator in (30) belongs to the
class of generalized matched filters |yH Σ−1a|2 [44, p.137],
[45, p.351] because the data is whitened and projected onto the
replica. SBL can be considered an adaptive version of this class
since its whitener [i.e., the model covariance (18)] is estimated
iteratively. For example, selecting an appropriate noise model
(Sec. I-B) improves whitening on a per-snapshot basis if the
noise process is non-stationary over snapshots. The inverse of
this model covariance exits (if the noise variance is non-zero),
whereas the inverse of a data-based estimated covariance may
be singular (e.g., when L < N ).

E. Noise Variance Estimation

While there has been more focus on estimating the source
location parameters or γ, noise is also part of the model and
physical system. In SBL, the noise variance controls the sharp-
ness of the peaks in the γ spectrum, with higher noise levels
giving broader peaks. Thus, as we optimize γ, we expect that
a better noise model will improve convergence properties and
processor localization performance.

In this section we give equations to estimate the noise variance
for Cases I and II in Sec. I-B. For derivations of these noise
estimates in detail see [2]. We will assume that the sparsity of γ
is known.

1) Noise estimate, Case I: Under Case I, where Σn l
=

σ2IN , the stochastic maximum likelihood [46] can provide an
asymptotically efficient estimate of σ2 if the number of sources
M is known. Let ΓM = diag(γnew

M ) be the covariance matrix
of the K active sources obtained above with corresponding ac-
tive replica vector matrix AM which maximizes (20). The noise
variance estimate is given by

σ̂2 =
tr[(IN − P)Sy ]

N − K
, (31)

where P = AM(AH
MAM)−1AH

M is the projection matrix onto
the subspace spanned by the active replica vectors. Note that

the Case I estimate (31) is valid for any number of snapshots,
even for just one snapshot. The algorithm using (30) for source
power estimates and (31) for noise variance estimate is referred
to as SBL1.

2) Noise estimate, Case II: For Case II, the noise variance
changes with snapshot l, i.e. Σn l

= σ2
l IN . We apply (31) for

each snapshot l individually leading to

σ̂2
l =

tr[(IN − P)ylyH
l ]

N − K
=

‖(IN − P)yl‖2
2

N − K
. (32)

The algorithm which uses (30) for source power estimates and
(32) for noise variance estimates is referred to as SBL2.

F. Multi-Frequency SBL

Let observations be available at multiple frequencies and
the f th frequency array data be denoted by Yf , where f =
1, . . . , F . The observation model is given by

Yf = Af Xf + Nf , (33)

where Af is the replica dictionary, Xf is the unknown source
amplitude matrix, and Nf is the noise at the f th frequency.
Since the same set of sources are generating these observations,
the sparsity profile of Xf is the same for all frequencies.

For computational tractability of the update equations, we
assume that the source amplitudes Xf and the noise Nf are
independent across frequencies. The priors for Xf also share
the same covariance Γ = diag(γ) for all frequencies, which
further reduces the number of parameters and in turn increases
identifiability. In other words, source amplitudes X̂f can vary
across frequency while the source’s power spectrum is repre-
sented by a single parameter (this can be viewed as an ideal
bandpass approximation to the source’s power spectrum). This
tractable multi-frequency SBL model thus allows for estimating
source location parameters rather than source power (note also
the normalized replica vectors).

Proceeding as in Sec. III-B, the multi-frequency log-
likelihood is then given by:

log p(Y1:F ;γ, (σ1:L )1:F )

∝ −
F∑

f =1

L∑

l=1

(
yH

f lΣ
−1
yf l

yf l + log detΣyf l

)
, (34)

where Σyf l
= Σnf l

+ Af ΓAH
f , Σnf l

= σ2
f lI. (35)

σ2
f l is the noise variance of the f th frequency at the lth snapshot.

As before, computing the derivative of (34) and equating it to
zero gives the multi-frequency update rule: [34], [43], [47]

γnew
m = γold

m

(∑F
f =1

∑L
l=1 |yH

f lΣ
−1
yf l

af m |2
∑F

f =1
∑L

l=1 aH
f mΣ−1

yf l
af m

)
. (36)

A plot of Eq. (36) can be interpreted as a broadband ambiguity
surface. The noise variance estimates for each frequency can be
computed using either (31) or (32) depending on the noise type.
Ideally, this estimate accounts for noise effects across snapshots
and frequencies.
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TABLE I
SBL ALGORITHM

G. SBL Pseudo-Code

The complete multi-frequency SBL algorithm is summarized
in Table I. The same algorithm is valid for Cases I and II. Given
the observed Yf , we iteratively update Σyf l

(18) by using
the current γ and Σnf l

. The Σ−1
yf l

is computed directly as the
numerical inverse of Σyf l

. For updating γm , m = 1, . . . ,M we
use (36). For the initialization of γ we set it to the constant 1.

Based on the corresponding Noise Case I or II, (31) or (32)
is used to estimate Σnf l

. The noise is initialized using the same
equations with P = 0,K = 0, which provides an over estimate
of the noise variance. The convergence parameter ε measures
the relative change in estimated total source power,

ε = ‖γnew − γold‖1
/ ‖γold‖1 . (37)

The algorithm stops when ε ≤ εmin and the output is the working
set M (17) from which all source parameters are computed.

IV. DATA SELECTION AND PROCESSING

A. SWellEx-96 Data

We use the relatively range-independent SWellEx-96 Event
S59 data set [27], [34], [48] for processing, recorded on Julian
Day 134, 11:45–12:50 GMT. The surface ship R/V Sproul trav-
eled with a speed of 2.5 m/s towards the VLA with closest point
of approach (CPA) at 1 km (Fig. 1). The ship towed a submerged
source at 60 m depth emitting multiple tonals.

For the 65 min Event S59, data are sampled at fs = 1500 Hz
on a 64 element vertical line array (VLA) but only N = 21
elements are used for processing (see Fig. 2). To localize the
submerged source, we processes 14 frequencies: 52, 67, 82,
97, 115, 133, 151, 166, 169, 204, 238, 286, 341, and 391 Hz.
Observed received levels for an unknown Source 1 location were
150 dB re 1 μPa for 166 Hz and 122–132 dB re 1 μPa for the
other frequencies.

The data are split into 135 segments (segment length of 29 s).
A FFT length of 4096 samples (2.7 s, 0.37 Hz bins) with 50%
overlap results in L = 21 snapshots per segment. These snap-
shots are used to construct the SCM (8) for Noise Case I. Snap-
shots are normalized prior to constructing the SCM for Noise
Case II (6). Our algorithm also processes the adjacent FFT bins

Fig. 1. (Color online) SWellEx-96 Event S59 showing the path of the surface
ship R/V Sproul in blue and an opportunistically recorded surface ship (an
interferer) in red. The R/V towed a deep source at approximately 60 m depth
along roughly a 175 m isobath during the first part of the 65 min VLA recording,
ending with a ”U-turn”.

Fig. 2. Waveguide with sound speed profile, VLA, and geoacoustic parameters
for range-independent SWellEx-96 Event S59. A single element out of the 22
element subset is excluded from processing.

at each frequency to accommodate an unknown Doppler shift.
Thus, we process F = 14 ∗ 3 = 42 frequencies using Bartlett
(7), WNGC (9), and SBL (36).

For the range-independent waveguide geoacoustic model
(Fig. 2) [48], the water depth is 216 m, 4 m below the deepest
array element. The 22 element VLA spans the lower half of the
water column and the inter-element spacing is 5.6 m (design
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frequency of 133 Hz at 1488 m/s). The seafloor is composed of
a 24 m thick sediment layer, overlaying a 800 m thick mudstone
layer. M = 4000 replica vectors a(θ) per frequency are com-
puted using the Kraken normal mode code [49] with a range
and depth discretization step-size of 50 m and 10 m on a 10 km
x 200 m grid, respectively. This step-size choice ideally is se-
lected according to the (physically) interfering modes excited at
the source location [50].

B. Simulations

To explore processor performance in a controlled environ-
ment, we use the SWellEx-96 replica vectors to simulate a
multi-frequency scenario. Source 1 is the submerged source and
Source 2 is a surface source (interferer). To simulate L = 21
snapshots while ensuring that both sources are incoherent, each
source phase is selected independently from a uniform distri-
bution [0, 2π) for each snapshot. This requirement is necessary
for eigenanalysis methods (e.g., MVDR, WNGC, and MUSIC)
because signal coherence affects processor performance when
inverting the SCM [45, p.385], [41]. SBL does not invert the
SCM and can accommodate coherent sources [27].

The simulated received signal and noise vectors are added:

Y = a(θ1)xT
1 + a(θ2)xT

2 + N, (38)

where each xK ∈ CL contains L complex amplitudes for the
Kth source. These observations Y = [y1 , ...,yL ] are used to
construct the SCM (8) over L snapshots for Noise Case I or
normalized snapshots for Noise Case II (6). At each frequency,
source amplitudes are drawn from a uniform distribution with
zero mean and specified variance. Similar to data observed dur-
ing the experiment, Source 2 (interferer) power is 12, 12, 10,
and 5 dB above Source 1 for 52, 82, 204, 286 Hz. Source 1 is
dominant for 166 Hz (15 dB above Source 2).

Processor performance at a particular frequency is evaluated
for additive noise (SNR discretization is 0.5 dB). Here, array (or
average single element) SNR is defined as the ratio of the power
of the weaker source to independent and identically distributed
(i.i.d.) complex Gaussian noise n:

SNR = 10 log10
E{||ax||22}
E{||n||22}

[dB]. (39)

Equation (39) corresponds to the single snapshot SNR, where a
is the source replica and x its complex amplitude. When simu-
lating L = 21 snapshots, the signals are added to i.i.d. complex
Gaussian noise in (38). When processing multiple frequencies,
each frequency is generated with a different noise seed.

The source wavefield does not correspond exactly to a dic-
tionary entry due to environmental uncertainty. We simulate the
stationary sources (38) on a more finely spaced grid of replica
vectors (2 m in depth and 10 m in range). The finely spaced
replica set allows each snapshot to be drawn randomly from
5*5-1=24 additional positions while remaining within ± 1/2
cell to the grid point (10 m depth and 50 m range discretization).

Processor performance is measured by comparing the loca-
tion of five dominant peaks found on the ambiguity surface to
the location of the grid point of the submerged Source 1. The

localization statistic PL for this source is computed by:

PL =
C

Q
, (40)

where C is the number of correctly found peaks for Q simu-
lations. For the single (multi) frequency case, we set Q = 500
(Q = 200). In order to effectively assess and compare proces-
sor performance, 95% credibility intervals (CI) are computed in
addition to localization statistics PL (which are representative
of the mean).

CIs are calculated in three steps: 1) a single peak belonging to
the set of five dominant (candidate) peaks having minimum dis-
tance (measured separately in range and depth) to the location of
the submerged Source 1 is retained. 2) 5% of data points with the
largest localization error are removed from the simulation set Q.
3) this process is repeated for all SNRs and each processor. In
addition to CIs, selected histograms further illustrate the distri-
butions of localization error for this joint localization-detection
problem.

V. RESULTS

A. Simulations

Processor localization performance is investigated first in a
controlled simulation environment. The weaker Source 1 is
placed in the SWellEx-96 environment at 2.5 km range and
60 m depth, Source 2 (i.e., the surface Interferer) at 4.5 km
range and 15 m depth. Panels in Fig. 3(a)–(c) show ambiguity
surfaces for Bartlett, WNGC –3 dB, and SBL1, respectively.
SBL1 and SBL2 use Noise Case I (31) and Noise Case II (32),
respectively.

To facilitate a comparison, each ambiguity surface is nor-
malized by its maximum value and processor output power P
is decibel [dB, i.e., 10 log10(P )]. Array SNR is 10 dB and all
processors use L = 21 snapshots at 204 Hz. The Interferer is
10 dB above Source 1.

Bartlett exhibits a strong sidelobe behavior [Fig. 3(a)].
WNGC and SBL1 suppress ambiguous source positions but
the location output power at Source 1 remains comparable to
ambiguous localizations [Fig. 3(b), (c)]. Hence processor perfor-
mance is measured by comparing the location of five dominant
peaks found on the ambiguity surface to the location of the grid
point of the submerged Source 1.

Figure 3(d) compares processor probability of localization
(PL ) [same scenario as Fig. 3(a)–(c)] versus SNR using Q =
500 simulations at each SNR. Bartlett exhibits poor perfor-
mance because the 5 highest peaks are not in the vicinity of
Source 1 (PL = 0). To suppress sidelobes, adaptive processing
is required. The localization performance for SBL1 and SBL2
is similar.

The benefit of SBL2 becomes apparent in a controlled simu-
lation environment subject to non-stationary noise across snap-
shots. Figure 4(a)–(d) show simulation 10 out of Q = 500, the
array SNR is 0 dB. SBL2 (d) outperforms SBL1 (c) because its
noise model can account for non-stationary noise. The localiza-
tion performance gain of SBL2 over SBL1 is about 20 dB in
SNR as observed in Panel (e).
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Fig. 3. Localization for Noise Case I with two simulated sources at 204 Hz
and SNR 10 dB. True positions are indicated by white squares and each panel is
normalized by its respective peak value. 21 data snapshots are drawn randomly
from a finer replica vector mesh for stationary sources. The weaker Source 1
is located at 2.5 km with power 10 dB below the surface Source 2 located at
4.5 km: (a) Bartlett; (b) WNGC –3 dB; and (c) SBL1. Panel (d) shows the
probability of localizing (PL ) the weaker Source 1.

Processor performance is evaluated by comparing 95% Cred-
ibility Intervals (CI) shown in Fig. 5 (same SNR as in Fig. 4 but
for simulation 200 out of Q = 500, to get a sense of processor
output variability). Panels (a)–(d) show Source 1 CIs by the size
of the white rectangles, the CI is zero for SBL2 at SNR = 0
dB. The 95% range error CI versus SNR in Panel (e) indicates
a similar behavior for Bartlett and WNGC –3 dB, and for SBL1
and SBL2.

Ambiguity surfaces for Bartlett and WNGC illustrate that CIs
strongly depend on the interference pattern (source coordinates)
for this joint localization-detection problem [51]. For example, a
CIR = 900 m in Fig. 5(e) from 0–20 dB SNR likely corresponds
to the sidelobe structure observed at 1.5 km range and 15 m
depth in Panels (a) and (b). All processors have a maximum
CIR of 2 km, which is the range separation between Source 1
and the dominant surface Interferer. The CIR curves for SBL1
and SBL2 are of similar shape but shifted by about 20 dB [see
also Fig. 4(e)].

The SBL CI is binary in Fig. 5(e) (0 or 2 km), lacking the
CIR = 900 m for Bartlett and WGNC. This suggests that the
underlying PDF is of different shape. The histogram in Fig. 6(a)
is used to compute 95% CIs (range only) in Fig. 5(a)–(e) at 0 dB
SNR. Range error in these histograms is not entirely indicative of

Fig. 4. Probability of localizing the weaker Source 1 for Noise Case II (see
Sec. I-B). The single-frequency scenario is the same as in Fig. 3 but with panel
(d) SBL2 and SNR of 0 dB in Panels (a)–(d).

Fig. 5. 95% Credibility interval (CI) for localizing Source 1 for Noise Case II.
Panels (a)–(d) show 95% CI for range and depth at SNR 0 dB as a white rectangle,
Panel (e) shows 95% CI for range (CIR ) only.
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Fig. 6. Range error histograms for localizing Source 1 for Noise Case II. The
95% CIs in Fig. 5(d) at 0 and −15 dB SNR are computed from Panels (a) and
(b), respectively. The plotted range of the y-axis is reduced from Q = 500 to
250 bins. The bin width is 150 m and range errors occurring at ranges greater
than 2 km are shifted to the bin closest to 2 km.

performance because the peak label (i.e., sidelobe or mainlobe of
the Kth source) at 900 m must be considered. SBL1 suppresses
this sidelobe while Bartlett and WNGC can not (Fig. 5(e), 0
to 6 dB SNR). Note that the WNCG can suppress the sidelobe
structures at 900 m with a –6 dB constraint (not shown), yielding
a similar binary CI as SBL (see also Fig. 4 in [27]).

For non-stationary noise, snapshots can be normalized prior
to processing (see Sec. I-C). In this case, performance increases
for SBL1 and WNGC when comparing results in Fig. 7 to Fig. 4.
SBL2 performance is similar in both cases, indicating that it can
accommodate both stationary or non-stationary noise.

Probability of localizing the weaker Source 1 increases at
lower SNRs when processing multiple frequencies (Fig. 8) for
Noise Case II with Q = 200 simulations per frequency. For
Bartlett and WNGC, a multi-frequency ambiguity surface is
the average of individually computed ambiguity surfaces (12),
SBL uses (36). The selected frequencies and the Source 1 to
Source 2 power ratio are selected to be representative of the
data, see below (38).

Bartlett can localize the quiet Source 1 at higher SNR in Fig. 8
than in Fig. 4. Processing additional frequencies improves the
location of the weaker source because the mainlobes are in the
same location while the sidelobes are not. Notably, the WNGC
–3 dB exhibits improved performance when compared to SBL1
[Panel (a)]. All adaptive processors exhibit similar performance
in Panel (b) when snapshots are normalized.

B. SWellEx-96 S59

We investigate processor performance to localize the weaker
Source 1 in a multi-frequency scenario 35 min into the
Event S59. Figure 9 shows the weaker, 60 m deep SWellEx-96

Fig. 7. As Fig. 4 but snapshots are normalized prior to processing.

Fig. 8. Probability of localizing the weaker Source 1 for Noise Case II in a
multi-frequency scenario (52, 82, 166, 204, and 286 Hz). Snapshots are (a) not
normalized and (b) normalized.
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Fig. 9. Multi-frequency localization for the SWellEx-96 deep Source 1 and surface Interferer for data segment 71 (35 min into the event). True positions are
indicated by white squares. Snapshots are not normalized (left, Noise Case I) and normalized (right, Noise Case II): (a), (e) Bartlett; (b), (f) WNGC –3 dB; (c), (g)
SBL1; and (d), (h) SBL2. The 14 processed frequencies range from 52–391 Hz and include the adjacent bins, in total F = 42 frequencies.

Source 1 and the surface Interferer at range 2.5 and 4.5 km,
respectively. Results in the left panels use non-normalized snap-
shots (Noise Case I). These multi-frequency ambiguity surfaces
show a similar scenario as in Fig. 3.

SBL exhibits improved localization performance for the sub-
merged source in Fig. 9(c) and (d) when compared to Bartlett
(a) and WNGC (b). Both Bartlett and WNGC display power
at the Interferer location and in adjacent cells. The WNGC can
discriminate against many of the ambiguous solutions compared
to Bartlett.

Modest mismatch is present in the SWellEx96 data set. SBL
robustness to VLA tilt was rigorously investigated in a similar
event of the same experiment [34], where the projected tilt on
the source-VLA plane was on the order of 1–2◦. Environmen-
tal mismatch exists because the acoustic waveguide parameters
are unknown (approximated with a range-independent model).
SBL displays no ambiguity in Fig. 9(c–d), which demonstrates
that SBL has properties similar to an adaptive processor while
exhibiting robustness to modest mismatch in the form of en-
vironmental and sensor location errors. Since SBL models the
complex source amplitudes as random quantities, it provides
robustness to amplitude and phase errors in the model.

Right panels in Fig. 9 use normalized snapshots. SBL1 and
SBL2 exhibit the best performance while WNGC –3 dB ex-
hibit some and Bartlett the most ambiguity for source localiza-
tion. Normalizing snapshots reduces ambiguity for localizing
the weaker source. Note that all processed frequency bins con-
tain energy from the Interferer while this is not necessarily the
case for the narrow band tonals emitted by the quiet Source 1.

Results in Fig. 10 show a similar analysis as Fig. 9 but for
segment 93 of 135 (45 min into the event). The Interferer is past
10 km range yet interference patterns result in ambiguous source
localizations near the surface. Normalized snapshots increase
processor output power [Fig. 10(e–h)] at the location of the
weaker source [e.g., compare Panel (b) to Panel (f)], which may

help source localization. Localization ambiguity is increased
in Fig. 10 compared to Fig. 9, which indicates that modeled
replicas are increasingly mismatched to the data.

To further demonstrate SBL performance in localizing the
weaker Source 1, we extend our processing to the entire Event
S59 in Fig. 11. We extract the five highest power levels for each
of the 135 segments (e.g., from results similar to Figs. 9–10)
and plot corresponding range information for each ambiguity
surface. This data then is displayed as a vertical stripe, contain-
ing only these five power levels in their respective range cells.
The vertical stripes are assembled in temporal order and indi-
vidually normalized range-time panels are shown in Fig. 11 for
each processor.

Results shown in Fig. 11 allow for a qualitative assessment
of processor performance in localizing both sources over the
entire event, split into 135 individual localization realizations.
Panels (c), (d) demonstrate the processing advantage of SBL,
where SBL2 performs equal or better than SBL1. The WNGC
−3 dB in Panel (b) can suppress some ambiguous tracks due to
sidelobes relative to Bartlett in Panel (a). All Processors exhibit
a gain in localizing both sources when snapshots are normalized
in Panels (e)–(h) and the localization performance of Bartlett,
SBL1 and SBL2 is similar. Comparing these results to the ap-
proximately true range cell (± 2 cells) of the source, processors
in Panels (a)–(h) yield 41, 26, 78, 83, 80, 62, 86, and 89 suc-
cessful localizations, respectively.

The encountered modest mismatch is not a constant over the
65 min Event S59. The acoustic waveguide parameters used to
calculate replicas in A (2) are assumed range-independent and
time invariant over the experiment duration. Clearly, this is an
attractive simplification but replica fitness degrades over time
in dynamic ocean environments. All processors are subjected
to environmental variability and array element position devia-
tions. The SBL algorithm displays robustness to these kinds of
changing mismatch.
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Fig. 10. As Fig. 9 but for segment 93 (45 min into the event). Normalizing snapshots improves localization of the weaker Source 1. The Interferer location is
past 10 km, outside the processed range.

Fig. 11. Multi-frequency range localization of Source 1 and the Interferer for the SWellEx-96 Event S59. For each of the 135 processed segments/ambiguity
surfaces (Fig. 9 shows No. 71 and Fig. 10 No. 93), five peaks corresponding to the highest power levels are plotted. Snapshots are not normalized (left, Noise
Case I) and normalized (right, Noise Case II): (a), (e) Bartlett; (b), (f) WNGC −3 dB; (c), (g) SBL1; and (d), (h) SBL2.

It appears a constant WNGC constraint of –3 dB is inap-
propriate at times, because the non-adaptive Bartlett processor
in Fig. 11(e) outperforms the WNGC in Fig. 11(f) from
40–65 min. This may be due to the joint processing of adjacent
bins and changing mismatch. The broadband Interferer is
present in all 3 adjacent bins but the narrowband Source
1 is just in a single bin. Model mismatch increases with
interferer range, in which case ambiguous solutions become
part of the 5 highest peaks. Likely WNGC performance
improves when allowing the constraint to change. In this
sense, the single SBL solution [computed across frequency
(36)] can better accommodate scenarios with operational
uncertainty.

VI. CONCLUSION

We demonstrated that sparse Bayesian learning (SBL) be-
haves similar to an adaptive processor and that it is robust to
modest mismatch in simulations and with the SWellEx-96 data
set. SBL outperforms WNGC −3 dB when localizing a weaker
source in the presence of an interferer in a multi-frequency data
scenario. Unlike other high-resolution sparse methods, SBL au-
tomatically determines sparsity. We further demonstrated the
usefulness of estimating non-stationary noise for SBL. Normal-
izing snapshots prior to computing the sample covariance in-
creases the localization performance for Bartlett, WNGC−3 dB,
and SBL.
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