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a b s t r a c t 

Sparse Bayesian learning (SBL) has emerged as a fast and competitive method to perform sparse process- 

ing. The SBL algorithm, which is developed using a Bayesian framework, iteratively solves a non-convex 

optimization problem using fixed point updates. It provides comparable performance and is significantly 

faster than convex optimization techniques used in sparse processing. We propose a multi-dictionary SBL 

algorithm that simultaneously can process observations generated by different underlying dictionaries 

sharing the same sparsity profile. Two algorithms are proposed and corresponding fixed point update 

equations are derived. Noise variances are estimated using stochastic maximum likelihood. The multi- 

dictionary SBL has many practical applications. We demonstrate this using direction-of-arrival (DOA) es- 

timation. The first example uses the proposed multi-dictionary SBL to process multi-frequency observa- 

tions. We show how spatial aliasing can be avoided while processing multi-frequency observations using 

SBL. SWellEx-96 experimental data demonstrates qualitatively these advantages. In the second example 

we show how data corrupted with heteroscedastic noise can be processed using multi-dictionary SBL 

with data pre-whitening. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction and motivation 

Compressed sensing or sparse processing is the process of es-

imating sparse vectors using significantly fewer measurements.

athematically, this corresponds to solving an underdetermined

ystem of linear equations under the constraint that the solution

s sparse. The exact solution has combinatorial complexity which is

mpractical to solve for high dimensional problems. The most pop-

lar, approximate and computationally feasible, sparse processing

ethod is basis pursuit [1] implemented using the LASSO [2] al-

orithm. Basis pursuit relaxes the sparsity criteria and the solu-

ion is given by solving a convex optimization problem. Though

easible, solving the optimization problem for high dimensions is

till computationally slow. One of the faster alternatives is the

atching pursuit algorithm [3] . However, this approach is greedy

nd can lead to suboptimal solutions. Another alternative, which

s not greedy and significantly faster than basis pursuit, is sparse

ayesian learning (SBL) [4–10] . 
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In SBL, the sparse weight vectors in the underdetermined sys-

em of linear equations are treated as random vectors with a Gaus-

ian prior density. Explicit sparsity constraints are not imposed on

he weight vectors. Unlike traditional prior models, the parameters

f the Gaussian prior are assumed unknown and are estimated by

erforming evidence maximization. The objective function for per-

orming evidence maximization is non-convex and an approximate

olution is obtained by formulating a fixed point update equa-

ion. The estimated prior parameters for the weights are sparse in

ractice. 

SBL was introduced for regression and classification problems

n the context of machine learning [4] . It has been used since in

ignal processing [5–9] . SBL can be viewed as a stochastic maxi-

um likelihood approach and has similarities with the SPICE and

IKES [11] algorithms for parameter estimation. 

SBL does not impose explicitly any sparsity constraints but de-

ermines sparsity automatically. Analytically, SBL solution can be

btained by solving an iterated reweighted LASSO problem and

ence sparsity is expected [12,13] . Various sparse signal recovery

lgorithms including LASSO and SBL can be unified within the

ayesian framework [14] . Cramér–Rao bounds for SBL based pa-

ameter estimation are discussed in [15,16] . 

A significant advantage of SBL over basis pursuit is that it can

etermine sparsity automatically without any user input. Being a
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probabilistic approach, SBL computes the posterior distribution of

the sparse weight vectors and hence provides estimates of their

covariance along with the mean. Computationally, SBL can signifi-

cantly outperform LASSO [10,17] . 

Most of the compressed sensing literature deals with process-

ing observations which can be represented sparsely using a single

dictionary. Though this is sufficient for most applications, in some

cases the different observations can be represented using different

dictionaries but with a shared sparsity profile. Traditionally such

observations are processed independently but it is advantageous

to process them together to make use of additional gain due to

the increased number of observations. 

In this paper we process simultaneously observations from

multiple dictionaries. We derive two SBL algorithms for multi-

dictionary processing to extract the common underlying sparsity

profile. The first algorithm SBL-CC (SBL-common covariance) pro-

cesses observations from all the dictionaries simultaneously giving

a single update rule. The second algorithm SBL-MC (SBL-multiple

covariance) processes observations from each dictionary separately

and then combines the result in a post-processing step. The noise

variance is estimated using the stochastic maximum likelihood ap-

proach which provides unbiased estimates. 

The multi-dictionary SBL approach with common sparsity pro-

file was used in Ref. [18] for image processing using a machine

learning framework. Their update equations for the inverse vari-

ance parameters of the weights use approximations that sacrifice

a rigorous maximum likelihood approach. In contrast , we develop

update equations for the weight variance parameter and it re-

quires no approximations. For each dictionary, multiple measure-

ment snapshots can be combined in the same update equation. We

apply our methods for direction-of-arrival estimation using simu-

lations and experimental underwater acoustic data. 

We demonstrate the usefulness of multi-dictionary SBL using

practical applications discussed below. Our focus is on direction-of-

arrival (DOA) estimation of multiple plane waves, also called beam-

forming. 

1) Multi-frequency SBL: The different frequency (different dictio-

nary) snapshots are generated by the same set of broadband

sources and hence share the same sparsity. Combining multi-

frequency observations using multi-dictionary SBL provides a

processing gain especially at low SNR. 

2) Multi-frequency SBL and aliasing: We show from simulations

that SBL can reduce spatial aliasing when processing multiple

frequencies. Multi-dictionary SBL is used to process data from

the SWellEx-96 experiment demonstrating application to real

data. 

3) Heteroscedastic noise: Often the sensor array data is corrupted

by noise whose statistics change spatially and temporally, i.e.

heteroscedastic noise. Preprocessing of this data to whiten the

noise gives rise to observations generated by a different dic-

tionary for each snapshot. We process these whitened snap-

shots using multi-dictionary SBL to improve beamforming per-

formance at low SNR. 

The multi-dictionary SBL developed in this paper can be applied

readily to process multi-frequency sensor array measurements. In

fact, sparse processing of wide-band (i.e. multi-frequency) signals

can be found in [9,17,19,20] . The wide-band SBL proposed in [9] for

DOA estimation assumes the noise variance to be same across all

the frequencies. Multi-frequency SBL is used in [17] for localizing a

towed source from underwater acoustic array measurements. 

The remainder of the paper is organized as follows. The sig-

nal model along with multi-dictionary priors and likelihoods are

discussed in Section 2 . The multi-dictionary SBL algorithms are

derived in Section 3 . The derived algorithms are studied using sim-

ulations and real data in Section 4 . Conclusions are provided in
ection 5 . Some portions of this paper have been presented at a

onference [21] . 

Notation: Scalar quantities are denoted by lowercase letters. A

old lowercase letter denotes a vector and a bold uppercase letter

enotes a matrix. A vector or matrix of all zeros is denoted by 0

here appropriate dimensions are assumed. An identity matrix of

imension N × N is denoted I N . The notation M 

H denotes the Her-

itian (conjugate transpose). The transpose operation is denoted

 

T . The field of complex numbers is denoted C . 

. Signal model 

In this section, we discuss the signal model used and the as-

umptions made in this paper. The single dictionary signal model

s discussed in Section 2.1 followed by a multiple dictionary signal

odel in Section 2.2 . 

.1. Single dictionary 

Let y ∈ C 

N be the complex signal which is expressed as 

 = Ax + n , (1)

here the noise n ∈ C 

N is zero mean circularly symmetric complex

aussian with density C N (n ; 0 , σ 2 I N ) ; A ∈ C 

N×M is the dictionary

r sensing matrix; x ∈ C 

M is the weight vector. In sparse problem

ormulations, x is assumed sparse with at most K non-zero entries

here K � M . The sparsity level K is not required explicitly or mod-

led by SBL. The vector x acts as a selection operator identifying

olumns of A that best explain the signal y . We assume A has the

aximal column rank N . 

We often process multiple observations (snapshots) simulta-

eously. Let Y = [ y 1 . . . y L ] ∈ C 

N×L denote L consecutive snapshots

rranged column-wise in a matrix. The multi-snapshot analogue

f (1) is 

 = AX + N (2)

here X = [ x 1 . . . x L ] and N = [ n 1 . . . n L ] . The following set of as-

umptions are made in our signal model: 

ssumption 1 

1) For the l th snapshot, the weight vector x l and the noise n l are

independent. 

2) The weights x l and the noise n l are assumed to be Gaussian,

independent and identically distributed (i.i.d.) across snapshots

for l = 1 , . . . , L . 

The above assumptions in turn imply that the observations y l 
re independent across snapshots. Additionally, in SBL the x l are

ssumed to be circularly symmetric complex Gaussian with zero

ean and covariance �, 

p(X ) = 

L ∏ 

l=1 

p(x l ) = 

L ∏ 

l=1 

CN (x l ; 0 , �) , (3)

here the unknown covariance matrix � is assumed diagonal,

= diag (γ ) , γ = [ γ1 . . . γM 

] . The covariance � is estimated by SBL.

ince the noise is i.i.d., the Type-I likelihood is given by 

p(Y | X ) = 

L ∏ 

l=1 

p(y l | x l ) = 

L ∏ 

l=1 

CN (y l ; Ax l , σ
2 I N ) . (4)

.2. Multiple dictionaries 

We assume observations generated by a set of dictionaries are

vailable simultaneously and a portion of the support is common

or all the weights. We are interested in recovering this shared

parsity structure. 
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Let the observation vectors corresponding to the D dictionar-

es be denoted Y 1: D ≡ { Y 1 . . . Y D } . These observations are related to

he corresponding sparse weights X 1: D ≡ { X 1 . . . X D } by the linear

odel 

 d = A d X d + N d , d = 1 , . . . , D (5) 

here A d are the dictionaries and N d are noise contributions. The

ollowing set of assumptions are made for the multi-dictionary sig-

al model: 

ssumption 2 

1) For a given dictionary A d , the weights X d and the noise N d sat-

isfy Assumption 1 . 

2) The weights X d and the noise N d are assumed to be indepen-

dent across dictionaries for d = 1 , . . . , D . 

From above assumptions the observations Y d are independent

cross dictionaries. 

.3. Multi-dictionary prior models 

There are two possibilities for the joint multi-dictionary prior

ver X 1: D as discussed next. 

.3.1. Common covariance (CC) prior 

This model assumes that the prior for all dictionaries is gov-

rned by the same statistical distribution. Let � be the covariance

f the weight vectors for all the dictionaries. Hence we have 

p(X 1: D ) = 

D ∏ 

d=1 

p(X d ) = 

D ∏ 

d=1 

L ∏ 

l=1 

CN (x dl ; 0 , �) . (6) 

his imposes identical sparsity constraints on all the weight vec-

ors in X 1: D because of the shared covariance. A common covari-

nce prior was used for multi-frequency beamforming in [9,17] . 

.3.2. Multiple covariance (MC) prior 

This model assumes that the statistics of the prior depend on

he dictionary. Let �d be the covariance of the weight vectors as-

ociated with d th dictionary. Hence the joint prior is given by 

p(X 1: D ) = 

D ∏ 

d=1 

p(X d ) = 

D ∏ 

d=1 

L ∏ 

l=1 

CN (x dl ; 0 , �d ) . (7) 

here �d = diag (γd ) . Since the covariance depends on the dictio-

ary, in general, the sparsity of vectors x dl will depend on dictio-

ary. To extract the common sparsity of interest, we post-process

o obtain an average γ across dictionaries. This model has been

sed in the context of multi-frequency beamforming in [22] . 

.4. Multi-dictionary likelihood 

Let σ 2 
d 

be the variance of the noise associated with observations

n the d th dictionary. The multi-dictionary likelihood can then be

ritten as 

p(Y 1: D | X 1: D ) = 

D ∏ 

d=1 

p(Y d | X d ) (8) 

= 

D ∏ 

d=1 

L ∏ 

l=1 

CN (y dl ; A d x dl , σ
2 
d I N ) . (9) 

. Multi-dictionary SBL 

In this section we derive the multi-dictionary SBL algorithm.

he evidence term is computed in Section 3.1 which on max-

mizing gives the fixed point update rules in Section 3.2 and

ection 3.3 . The noise update is discussed in Section 3.4 . 
.1. Multi-dictionary evidence 

In the SBL framework [4,6] , the prior covariance parameter for

eight vectors is assumed unknown and estimated using the ob-

erved signal Y 1: D . It is estimated by maximizing the evidence

also called Type-II maximum likelihood). Since both the prior and

he Type-I likelihood are Gaussian, the evidence term p ( Y 1: D ) has

 Gaussian form as well 

p(Y 1: D ) = 

D ∏ 

d=1 

p(Y d ) = 

D ∏ 

d=1 

∫ 
p(Y d | X d ) p(X d ) dX d (10) 

= 

D ∏ 

d=1 

L ∏ 

l=1 

∫ 
CN (y dl ; A d x dl , σ

2 
d I N ) CN (x dl ; 0 , �d ) dx dl 

= 

D ∏ 

d=1 

L ∏ 

l=1 

CN (y dl ; 0 , �y d ) , (11) 

here we have used the multiple covariance (MC) prior above and

an obtain the common covariance (CC) version by setting �1 =
 . . = �D = �. The data covariance �y d 

is given as 

y d = E(y dl y 
H 
dl ) = E(A d x dl x 

H 
dl A 

H ) + E(n dl n 

H 
dl ) (12) 

= A d �d A 

H 
d + σ 2 

d I N . (13) 

he logarithm of the evidence is 

og (p(Y 1: D )) = −
D ∑ 

d=1 

L ∑ 

l=1 

(
log | �y d | + y H dl �

−1 
y d 

y dl 

)
+ C. (14) 

Depending on the prior model used for the weights we have

wo SBL algorithms. The multi-dictionary SBL using CC prior model

s discussed next. 

.2. SBL-Common Covariance 

For this model we set �1 = . . . = �D = � = diag (γ ) . The un-

nown parameters γ are estimated by maximizing the evidence 

ˆ = arg max 
γ

log (p(Y 1: D )) (15) 

= arg min 

γ

{
D ∑ 

d=1 

L log | �y d | + Tr (Y 

H 
d �

−1 
y d 

Y d ) 

}
. (16) 

ne approach to solve this problem is to use the EM algo-

ithm [23] but the resulting update equations have slow con-

ergence [4,6] . We perform differentiation of the objective func-

ion (16) to obtain a local minimum. We have the following deriva-

ive relations for the data covariance �y d 

∂ log | �y d | 
∂γm 

= Tr 

(
�−1 

y d 

∂�y d 

∂γm 

)
, (17) 

∂ �−1 
y d 

∂γm 

= −�−1 
y d 

∂�y d 

∂γm 

�−1 
y d 

, 
∂�y d 

∂γm 

= a dm 

a H dm 

. (18) 

ifferentiating (16) with respect to the m th diagonal element γ m 

∂ 

∂γm 

{
D ∑ 

d=1 

L log | �y d | + Tr (Y 

H 
d �

−1 
y d 

Y d ) 

}

= 

D ∑ 

d=1 

L Tr 

(
�−1 

y d 
a dm 

a H dm 

)
− Tr 

(
Y 

H 
d �

−1 
y d 

a dm 

a H dm 

�−1 
y d 

Y d 

)
. 
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Equating the derivative of the objective function to zero 

1 = 

1 

L 

∑ D 
d=1 Tr 

(
Y 

H 
d 
�−1 

y d 
a dm 

a H 
dm 

�−1 
y d 

Y d 

)
∑ D 

d=1 Tr 

(
�−1 

y d 
a dm 

a H 
dm 

] 

) (19)

γm 

γm 

= 

⎛ 

⎝ 

1 

L 

∑ D 
d=1 Tr 

(
Y 

H 
d 
�−1 

y d 
a dm 

a H 
dm 

�−1 
y d 

Y d 

)
∑ D 

d=1 Tr 

(
�−1 

y d 
a dm 

a H 
dm 

] 

)
⎞ 

⎠ 

b 

(20)

where we introduced γ m 

terms to obtain an iterative update equa-

tion. Since the fixed point update is not unique, the exponent term

b is introduced to include a broad range of update rules and to

control the speed of convergence. Different update equations in-

troduced in the literature can be obtained using different values of

b . The update then is 

γ new 

m 

= γ old 
m 

⎛ 

⎝ 

∑ D 
d=1 Tr 

(
�−1 

y d 
a dm 

a H 
dm 

�−1 
y d 

S y d 

)
∑ D 

d=1 Tr 

(
�−1 

y d 
a dm 

a H 
dm 

] 

)
⎞ 

⎠ 

b 

. (21)

where S y d is the sample covariance matrix S y d = 

1 
L Y d Y 

H 
d 
, and �y d 

is

given by (13) . In this multi-dictionary formulation, a unified update

rule is obtained that combines all the observations together from

different dictionaries. A single parameter vector γ is estimated us-

ing all the multi-dictionary observations. Since γ is the variance,

even though it is forced to be same across dictionaries, the actual

weight vector estimates x dl could still be different from dictionary

to dictionary. Single dictionary update rule can be obtained by set-

ting D = 1 in (21) . 

Remark. There are multiple ways to formulate a fixed point up-

date equation. Our formulation is inspired by some of the equa-

tions used in the literature [4,6,10] and convergence properties of

the simulation results. It is not clear for what values of b , if any,

convergence of (21) is guaranteed. For a single dictionary ( D = 1 ), a

value of b = 1 gives the update equation used in [4,6] and b = 0 . 5

gives the update equation in [10] . 

3.3. SBL-Multiple Covariance 

For this model the unknown covariance for each dictionary has

to be computed. Maximizing the evidence we have 

ˆ γ1 , . . . , ̂  γD = arg max 
γ1 , ... , γD 

log (p(Y 1: D )) (22)

= arg min 

γ1 , ... , γD 

{
D ∑ 

d=1 

L log | �y d | + Tr (Y 

H 
d �

−1 
y d 

Y d ) 

}
. 

Since the different dictionary components are decoupled, maximiz-

ing the joint evidence corresponds to maximizing the evidence for

each dictionary individually. Thus the update rule for d th dictio-

nary is obtained from (21) by setting D = 1 as 

γ new 

dm 

= γ old 
dm 

⎛ 

⎝ 

Tr 

(
�−1 

y d 
a dm 

a H 
dm 

�−1 
y d 

S y d 

)
Tr 

(
�−1 

y d 
a dm 

a H 
dm 

)
⎞ 

⎠ 

b 

. (23)

In contrast to SBL-CC (21) , multiple parameter vectors γd are esti-

mated in SBL-MC (23) from multi-dictionary observations. We can

combine γd to obtain a single multi-dictionary estimate by averag-

ing as follows 

ˆ γ = 

1 

D 

D ∑ 

d=1 

ˆ γd . (24)
c  
f the sparsity of ˆ γd is the same across dictionaries, the averaging

bove could enhance the sparsity of the estimate ˆ γ in the pres-

nce of noise. This is because the true sparse components which

re present in all the dictionaries will get averaged, whereas the

andomly distributed spurious components (due to sidelobes or

oise) will get suppressed by the averaging process. The averag-

ng in (24) is inspired by traditional multi-frequency processing in

onventional beamforming where the beamformer outputs at each

requency are combined incoherently [17] . 

.4. Noise estimate 

Similar to γ m 

, an update equation for σ 2 
d 

can be obtained us-

ng the derivative of the evidence with respect to σ 2 
d 

. But this

pdate is biased towards zero [6,9,10] . The noise also can be in-

egrated out by modeling the noise precision parameter with a

amma prior distribution as done in [18] . We use a stochastic

aximum likelihood based method to estimate σ 2 
d 

. Let A M 

be

ormed by K columns of A indexed by M , where the set M indi-

ates the location of non-zero entries of x with cardinality |M| =
. We can estimate M using γ through thresholding or picking its

ighest entries. The noise variance estimate for d th dictionary is

hen [9,10,24] 

ˆ 2 d = 

1 

N − K 

Tr 
(
(I N − A d, M 

A 

+ 
d, M 

) S y d 
)
, (25)

here A 

+ 
M 

denotes the Moore–Penrose pseudo-inverse. In [9] a

ommon noise estimate was used for all dictionaries (i.e. frequen-

ies). 

. Simulations and experimental data 

.1. SBL implementation 

This section discusses the algorithmic implementation of the

BL update rules developed in Sections 3.2 and 3.3 . A pseudocode

or the multi-dictionary SBL algorithm is given in Algorithm 1 . The

ingle dictionary algorithm is obtained by setting D = 1 . 

lgorithm 1 Multi-dictionary SBL algorithm. 

1: Parameters: ε = 10 −6 , N t = 30 0 0 , b = 1 

2: Input: S y d , A 

o 
d 
∀ d 

3: Initialization: γ old 
m 

= 1 , ∀ m, ˆ σ 2 
d 

= 0 . 1 ∀ d 

4: for i = 1 to N t 

5: Compute: �y d 
= A d �

old A 

H 
d 

+ ˆ σ 2 
d 

I ∀ d 

6: (if SBL-CC) γ new 

m 

update ∀ m using (21) 

(if SBL-MC) γ new 

dm 

update ∀ m, d using (23)-(24) 

7: ˆ σ 2 
d 

estimate ∀ d using (25) 

8: If 
|| γnew −γold || 1 

|| γold || 1 < ε, break 

9: γold = γnew 

10: end 

11: Output : γnew 

Parameters ε and N t determine the error convergence criteria

nd the maximum number of iterations, respectively. Here we ini-

ialize γ and σ 2 
d 

to arbitrary constant values but a more informed

nitialization can be used if available (for example γ could be set

o the conventional beamforming solution). In the examples we

hoose the power exponent in the update rules to be b = 1 as used

n [4,6] , but b = 0 . 5 also gives similar performance. For both values

f b a good noise estimate (25) is essential for convergence as ob-

erved. 

The inputs to the algorithm are the sample covariance matri-

es S y d and the sensing matrices A d . The parameters to estimate,
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and σ 2 
d 
, are initialized to constant non-zero values. The γ m 

re updated using (21) for SBL-CC and using (23) and (24) for SBL-

C algorithm. K strongest peak locations are identified from γnew 

o construct A M 

and the dictionary-dependent noise estimate (25) .

hough we assume K to be known for estimating the noise, this

an be avoided by using model order identification methods [9] .

f there are fewer peaks ˆ K < K in γnew , then the algorithm uses
ˆ 
 during its processing. Specifically, the set M now has the cardi-

ality |M| = 

ˆ K and A d, M 

has fewer columns which in turn affect

he noise update (25) . Though we did not encounter in our simula-

ions, this could happen if the peaks are required to have a certain

inimum amplitude. 

For each iteration, the computation is dominated by the up-

ate rule for γ . From the structure of the update rule, both al-

orithms have same complexity. Since �d is diagonal, the com-

lexity of (13) is O(MN 

2 ) and computing the inverse of �y d 

s O(N 

3 ) . In a vectorized implementation of (21) (or (23) ), for

ach dictionary, the various matrix multiplications together require

(2 M N 

2 + M NL ) computations. Thus the overall complexity of a

ingle multi-dictionary iteration is of the order of O 

(
D × [ N 

3 +
 M N 

2 + M NL ] 
)
. 

We use beamforming to demonstrate the benefits of the pro-

osed SBL algorithms. Sparsity of SBL is measured by γ . Since the

eamforming dictionary has high coherence among neighboring

olumns, we only consider local peaks. A local peak is defined as

n element which is larger than its adjacent elements, i.e. a peak is

resent at l if γl−1 < γl > γl+1 . Since γ corresponds to the source

ower, it is treated as the angular power spectrum. 

.2. Beamforming 

For the beamforming application, the observed signal is a lin-

ar combination of plane waves. Since the number of sources

arrival angles) is small, finely dividing the angle space results in

 sparse x of complex amplitudes. By formulating beamforming as

n underdetermined linear problem, sparse processing algorithms

an be used to recover the arrival angles [10,25–27] . We use SBL

o recover the DOAs. 

For a narrow-band signal of wavelength λ and uniform sensor

rray with separation d , the sensing matrix columns are 
0

2

4

6

8

R
M

S
E

 (
)

-5 0  5  
SNR 

0

2

4

6

8

Fig. 1. RMSE vs SNR for (a) SBL-CC, and (b) SBL-MC with N = 20 sens
 m 

= [1 , e j2 π
d 
λ

sin (θm ) , . . . , e j2 π
(N−1) d 

λ
sin (θm ) ] T , (26) 

or m = 1 . . . M, where θm 

is the m th discretized angle. In simu-

ations, the angle space [ −90 , 90] ◦ is discretized with 1 ° separa-

ion giving M = 181 . We model a N = 20 sensor array. L = 30 (> N)

napshots are processed. The array SNR per snapshot is defined

s 

NR = 10 log 10 

E{|| Ax || 2 2 } 
E{|| n || 2 

2 
} . (27) 

.3. Multi-frequency analysis using SBL 

Performance gain can be obtained by processing multiple fre-

uencies simultaneously. Consider three sources located at angles

 −20 , −15 , 75] ◦, their amplitudes are zero-mean complex Gaus-

ians with standard deviation [4, 13, 10] respectively. The proxim-

ty of weaker source at −20 ◦ to the strongest source at −15 ◦ makes

his challenging for DOA estimation. Let observations be recorded

t F frequencies with the same source variance at each frequency

or a given DOA. The SNR is the same for all snapshots and for

ll frequencies. DOA estimation is performed using the SBL-CC and

BL-MC algorithms. If θ i 
k 

and 

ˆ θ i 
k 

are the true and estimated DOA of

he k th source in the i th simulation, then the DOA RMSE is com-

uted as follows 

MSE = 

√ ∑ N iter 

i =1 

∑ K 
k =1 (θ

i 
k 
− ˆ θ i 

k 
) 2 

K N iter 

, (28) 

here N iter is the number of Monte Carlo trials. 

The multi-frequency gain is observed from the RMSE versus

NR plots in Fig. 1 . The number of frequencies range from F =
 , 2 , 4 , 8 . The frequencies used are {80 0} Hz, {60 0, 80 0} Hz, {40 0,

0 0, 80 0, 10 0 0} Hz, and { 40 0 , 50 0 , . . . , 110 0 } Hz respectively. The

ensor array separation is set to d = 

λ800 
2 where λ800 is the wave-

ength corresponding to 800 Hz signal. N = 20 sensors are used

iving a constant aperture in all cases. The RMSE is computed over

0 0 0 Monte Carlo trials. 

For F = 1 , SBL-CC and SBL-MC give identical RMSE in Fig. 1 . We

bserve that for SBL-CC as more frequencies are used the RMSE

educes for a given SNR whereas for SBL-MC they increase. This
(a) SBL-CC

F = 1
F = 2
F = 4
F = 8

10 15 20 
(dB)

(b) SBL-MC

ors as number of frequencies is increased from F = 1 to F = 8 . 
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Fig. 2. RMSE vs SNR for SBL-CC with N = 20 sensors and F = 4 , 8 . The true source variance can either have a flat frequency spectra (solid line) or non-flat frequency spectra 

(dashed line). 
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is because for SBL-CC just one γ (21) is estimated from all obser-

vations making the estimation robust. For SBL-MC, since each fre-

quency is processed independently (23) and later averaged (24) , er-

rors present in individual γd estimates, for example due to aliasing,

cannot be fully overcome. Hence SBL-MC has higher error when

compared to SBL-CC. 

Though γ is assumed to be same for all frequencies, this may

not be true in practice if the frequency spectrum is not flat. To

demonstrate robustness of SBL-CC for DOA estimation in the pres-

ence of non-flat frequency spectra, we generate observations such

that the source standard deviations are different across frequency.

Let [4, 13, 10] be the nominal standard deviation for the sources as

before. To simulate a non-flat spectrum for each source, its nomi-

nal standard deviation is multiplied by a different uniform random

number in the range [0.5,1.5] for each frequency. The standard de-

viation is same across snapshots for a given frequency. The SBL-CC

algorithm is applied to the generated observations and the RMSE

for DOA estimation is shown in Fig. 2 for F = 4 , 8 . The presence

of non-flat spectra has little impact on RMSE relative to the case

when the spectra are flat. The performance is slightly better when

more frequencies are used. 

4.4. Aliasing suppression using multi-dictionary SBL 

SBL can be used to process multi-frequency spatial data in the

presence of aliasing. Each frequency has a different dictionary and
Fig. 3. Gram matrices for array spacings : d = 

λ
2 

(left
he multi-dictionary analysis in Section 3 is used to process multi-

requency observations. Ref. [19] discusses aliasing suppression for

ideband signals using basis pursuit and orthogonal matching pur-

uit. We demonstrate the aliasing suppression ability of SBL using

oth simulated and experimental data. 

.4.1. Simulation analysis 

A large array aperture and hence a large sensor spacing is de-

irable to obtain high resolution beamforming. A drawback of large

ensor spacing is that it limits the highest frequency that can be

rocessed without encountering aliasing. This drawback partially

an be overcome by multi-dictionary SBL. 

The Gram matrix ( A 

H A ) for two array spacings are shown in

ig. 3 , N = 20 . For a uniform linear array (ULA) spacing of d = 

λ
2 

here is one main lobe for each angle. When the spacing is dou-

led, i.e. d = λ, grating (side) lobes appear due to aliasing. 

We consider the three source example in Section 4.3 with

ources located at [ −20 , −15 , 75] ◦ and source standard deviation

4, 13, 10]. Let f 1 and f 2 = 2 f 1 be two frequencies with wave-

engths λ1 and λ2 = 

λ1 
2 . The frequency spectra are assumed to be

at in this section. The histograms of the top three peaks obtained

rom γ are shown in Fig. 4 when observations from each frequency

s processed independently using SBL. Aliasing is absent in Fig. 4 a

ince d = 

λ1 
2 . Doubling the signal frequency with the same sensor

pacing, Fig. 4 b, gives aliased peaks. Higher frequency gives higher
) and d = λ (right). Number of sensors N = 20 . 
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Fig. 4. Aliasing analysis using histograms of the top three peaks: Single frequency (a) SBL, half-wavelength spacing (b) SBL, full-wavelength spacing. Two frequencies (c) 

SBL-MC (d) SBL-CC. Number of sensors N = 20 . Source (red circles) and aliased peak (black crosses) locations are indicated. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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esolution but with additional aliased peaks. Thus SBL has aliasing

hen only a single frequency is used. 

We now combine the observations from the two frequencies

sing multi-dictionary SBL when the sensor spacing is fixed at

 = 

λ1 
2 = λ2 . The two multi-dictionary SBL formulations are dis-

ussed in Section 3 . In SBL-MC, observations from each frequency

re processed independently and the multi-frequency γ is obtained

y summation (24) . Fig. 4 c shows the histogram when SBL-MC is

sed. The bin count is significant at aliased locations and hence
ig. 5. Multi-frequency processing: The processor results as a function of frequency wh

ottom panel shows the plot of the average power across the frequencies. SNR = −10 dB
BL-MC cannot suppress aliasing. The SBL-CC enforces a common

parsity profile by requiring γ to be the same across frequencies.

he histogram obtained using SBL-CC is shown in Fig. 4 d. Since

liased peak locations are not shared across frequencies, they are

uppressed by jointly processing multi-frequency observations us-

ng (21) . 

The aliasing suppression ability of SBL-CC also is demonstrated

sing a large number of frequencies, see Fig. 5 . Specifically we con-

ider measurements collected at 101 different frequencies which
en 4 sources are present obtained using (a) CBF, (b) SBL-MC, and (c) SBL-CC. The 

 and L = 100 snapshots per frequency. Number of sensors N = 20 . 
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are { 500 , 510 , . . . , 1500 } Hz. The uniform sensor array has N = 20

sensors with spacing such that frequencies above 750 Hz expe-

rience aliasing. Four sources with equal (unit) power are located

at {−60 ◦, −20 ◦, 20 ◦, 60 ◦} . Beamforming is performed using conven-

tional beamforming (CBF) and SBL-MC for each frequency indi-

vidually and using SBL-CC for all frequencies jointly. The results

are shown in Fig. 5 for various frequencies at −10 dB SNR. CBF

and SBL-MC experience aliasing at higher frequencies. The aver-

age power across frequencies is also shown. The CBF has the least

resolution and dynamic range whereas the peaks in SBL-CC have

the strongest ability to stand out even in the presence of a large

amount of aliasing. 

4.4.2. Experimental data analysis 

The high-resolution performance of SBL compared to CBF is val-

idated with experimental data in a complex multi-path, shallow-

water environment. The aliasing suppression ability of multi-

dictionary SBL is demonstrated by processing a subset of the array

sensors. Though the true source spectrum is not flat for this ex-

perimental data, based on the analysis in Section 4.3 , we still can

apply multi-frequency SBL for accurate DOA estimation. 

The data is from the Shallow Water evaluation cell Experiment

1996 (SWellEx-96) Event S5 [28] collected on a 64-element vertical

line array. Element 43 is excluded from processing. The array spans

the lower part of the 212 m watercolumn from 94 to 212 m with

inter-sensor spacing d = 1 . 875 m. During the 77 min Event S5, a

deep source submerged at 60 m was towed from 9 km southwest

to 3 km northeast of the array at 5 km (2.5 m/s). 
Fig. 6. (a) Single-frequency (388 Hz) and (b) multi-frequency (166, 283, and 388 Hz) an

elements of the array. In (a) the top row is CBF and bottom row is single frequency SBL

The columns of each of the panels are normalized. 
The source was transmitting a set of ten frequencies with

onstant source levels of which the three frequencies {166, 283,

88} Hz are processed. The data are split into 2257 overlapping

egments, whereas a single segment is of 2.7 s duration. Snap-

hots are computed continuously from the data before being as-

igned to a segment. A FFT length of 2048 samples (1.35 s) with

0% overlap results in L = 3 snapshots for each segment with a

FT bin width of 0.75 Hz. To accommodate Doppler shift, we

earch two adjacent FFT bins and extract the bin with maximum

ower. 

Both the full array (64 elements, Array-1) and a subset (21 el-

ments, Array-2) are used for processing. Array-2 consists of every

hird element from Array-1 (Array-1 spacing d and Array-2 spacing

 d ). By design, Array-1 suffers no aliasing whereas Array-2 suffers

liasing above 133 Hz. 

Single frequency (388 Hz) data is processed using both Array-

 and Array-2. Fig. 6 a shows CBF output power (top row) and

for SBL (bottom row) as the source moves over time. Array-

 processing does not suffer from aliasing ( Fig. 6 a, left) and

ulti-path arrivals can be seen. SBL provides finer angular reso-

ution than CBF. Significant aliasing ( Fig. 6 a, right) is present in

oth the SBL and CBF outputs when Array-2 is used. This alias-

ng is due to insufficient spacial sampling. Significant power is

edistributed into aliased locations causing ambiguities in DOA

stimation. 

Combining three frequencies {166, 283, 388} Hz and process-

ng them from Array-1 and Array-2 is shown in Fig. 6 b. Along

ith CBF output power (top row), the γ surfaces are shown for
alysis of SWellEx-96 Event S5 data using 63 (left column) and 21 (right column) 

. In (b) the top row is CBF, middle row is SBL-MC, and the bottom row is SBL-CC. 
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BL-MC (middle row) and SBL-CC (bottom row). Neither SBL nor

BF show any aliasing when Array-1 ( Fig. 6 b, left) data is pro-

essed. For Array-2 ( Fig. 6 b, right), CBF and SBL-MC both exhibit

liasing since the single frequency surfaces are averaged across

requencies. The relatively steep true arrivals around ± 20 ° eas-

ly can get masked by the aliased arrivals causing DOA estima-

ion errors. In comparison, SBL-CC shows no aliasing with Array-2

nd the multi-path structure is preserved. We note that in general

here are slightly fewer peaks identified, when compared to the

orresponding Array-1 results, because of the reduced array gain of

rray-2. 

.5. Multi-dictionary SBL for heteroscedastic noise 

.5.1. Heteroscedastic noise model 

Consider the signal model (1) for the l th snapshot 

 l = Ax l + n l , (29) 

here the statistics of the noise n l are not stationary but change

cross sensors and snapshots. Specifically, the noise has zero mean
ig. 7. Single source at 0 °, RMSE vs. SNR for DOA estimation in (a) homoscedastic noise

eak at an SNR of −20 dB. 
nd covariance �n l 
, n l ∼ CN (n l ; 0 , �n l 

) . We refer to this as a het-

roscedastic noise model [29] . The noise is still assumed to be in-

ependent across snapshots and uncorrelated across sensors. Thus

he noise covariance matrix is diagonal, �n l 
= diag ([ σ 2 

1 l 
, . . . , σ 2 

Nl 
])

here σ 2 
nl 

is the variance of the n th sensor element at the l th snap-

hot. 

.5.2. Whitening 

Direct application of single dictionary multi-snapshot SBL to the

bove set of observations would be sub-optimal because of the

hanging noise statistics. One way to process them is to whiten

he noise. Multiplying (29) by W l we have 

˜ 
 l = 

˜ A l x l + 

˜ n l , (30) 

˜ 
 l = W l y l , ˜ A l = W l A , ˜ n l = W l n l , (31) 

here W l = diag ([ σ−1 
1 l 

, . . . , σ−1 
Nl 

]) is the whitening matrix. The dis-

ribution of the modified noise is ˜ n l ∼ CN ( ̃  n l ; 0 , I ) which is sta-

ionary across time and sensors. Though the resulting noise is
, (b) heteroscedastic noise. (c) Histogram of the location of the highest identified 
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whitened, we obtain a system of equations where the dictionary
˜ A l is snapshot dependent. This system of equations can be solved

using the multi-dictionary SBL developed in Section 3 . 

4.5.3. Multi-dictionary approach 

From (30) the dictionary ˜ A l changes for each snapshot. The

source vector x l is unaffected by this transformation and thus also

γ . After whitening, the array covariance matrix (13) becomes 

�˜ y l 
= � ˜ n l 

+ 

˜ A l � ˜ A 

H 
l . (32)

Carrying this covariance as well as the ˜ y l and 

˜ A l through the multi-

dictionary SBL-CC derivation gives the following update for γ: 

γ new 

m 

= γ old 
m 

( ∑ L 
l=1 | ̃ y H 

l 
�−1 

˜ y l 
˜ a lm 

| 2 ∑ L 
l=1 ̃  a H 

lm 

�−1 
˜ y l 

˜ a lm 

) b 

, (33)

where the dictionary atoms ˜ a lm 

change with snapshot. This SBL-

CC algorithm is applied to observations with heteroscedastic noise
Fig. 8. Three sources at {−20 , −15 , 75 } ◦, RMSE vs. SNR for DOA estimation in (a) homo

locations in γ at an SNR of −10 dB. 
fter whitening. Similarly the SBL-MC approach can be applied to

he whitened observations. 

.5.4. Noise estimate 

For low SNR, we can assume the observed signal Y only con-

ains noise and an analytic approximation is favored. Here we

ssume no knowledge of γ or its support. Assuming the diagonal

ntries of �y l 
are much larger than the diagonal entries in A �A 

H ,

e can approximate �n l 
by the diagonal entries of �y l 

, 

n l ≈ diag ( diag (�y l )) . (34)

urther, considering the fact we only have one snapshot available

o estimate �n l 
, we can write 

n l ≈ diag ( diag (y l y 
H 
l )) = diag (| y 1 l | 2 , . . . , | y Nl | 2 ) . (35)

n other words, we consider 

ˆ nl = | y nl | . (36)

his noise estimate is used for constructing the l th weighting ma-

rix W l for normalizing the observations y l and the dictionary
scedastic noise, (b) heteroscedastic noise. (c) Histogram of the three highest peak 
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toms A l , resulting in a different system of Eq. (30) for each snap-

hot. After whitening, the expected noise variance ˜ σ 2 
l 

of ˜ n l ap-

roaches 1 for low SNR and approaches 0 for high SNR. Since the

ariance for each snapshot, ˜ σ 2 
l 
, is expected to be similar, we com-

ute the average noise variance 

˜ 2 = 

1 

L 

L ∑ 

l=1 

˜ σ 2 
l (37) 

here ˜ σ 2 
l 

is given by (25) . 

The multi-dictionary SBL approach to process heteroscedastic

ata can be contrasted with the single dictionary SBL approach

n [29] . The noise variance is estimated for each sensor per snap-

hot in [29] . Since the number of unknown parameters is equal

o the size of the observed data, these estimates are less accurate.

hereas in the current method, the whitening step normalizes the

oise variance across snapshots and sensors significantly reducing

he number of unknown parameters to estimate. 

.5.5. Simulation - single DOA 

Consider a single DOA located at 0 ° and observations recorded

y an array with N = 20 sensors. Two noise cases are consid-

red, homoscedastic noise and heteroscedastic noise. Homoscedas-

ic noise has the same variance across sensors and snapshots. We

imulate heteroscedastic noise by sampling the noise standard de-

iation from a log-normal distribution as log 10 σnl ∼ U(−1 , 1) . The

ata is processed using various algorithms including CBF, SBL (sin-

le dictionary based processing assuming homoscedastic noise),

BL-CC, and SBL-MC. Both SBL-CC and SBL-MC process whitened

bservations as discussed in Section 4.5.3 . 

Plots of RMSE vs. SNR are shown in Fig. 7 a and b for process-

ng observations containing homoscedastic noise and heteroscedas-

ic noise respectively. The performance of various algorithms is

imilar for homoscedastic noise as there is no advantage of using

oise dependent processing such as SBL-CC and SBL-MC. Whereas

oth SBL-CC and SBL-MC perform significantly better in case of

eteroscedastic noise, especially in the low SNR regime. For het-

roscedastic noise case, a histogram of the highest peak (in γ) is

hown in Fig. 7 c when SNR is −20 dB. The histograms for both

BL-CC and SBL-MC are concentrated around true source location

f 0 °. All figures are computed using 100 Monte Carlo simulations.

.5.6. Simulation - three DOAs 

We now consider an example with three DOAs located at

−20 , −15 , 75 } ◦ and having corresponding power of {10, 22, 20}

B. The RMSE vs. SNR is plotted in Fig. 8 a for homoscedastic noise

nd in Fig. 8 b for heteroscedastic noise. The SBL-MC performs

ery poorly in both noise cases because estimating γ l per snap-

hot and averaging them is not effective at low SNR when sources

re closely spaced. SBL-CC has the lowest RMSE when the noise is

eteroscedastic. The histogram of the top three peaks is shown in

ig. 8 c at −10 dB SNR. Only SBL-CC populates the histogram at all

he three DOA locations. 

. Conclusions 

We developed SBL to process observations from multiple dic-

ionaries when a portion of the support is common for all of the

eight vectors. The first multi-dictionary SBL shares the prior co-

ariance across dictionaries and thus has fewer unknowns to es-

imate. A unified update rule is derived combining observations

rom all of the dictionaries. The second multi-dictionary SBL has

ictionary-dependent prior parameters which are estimated inde-

endently for each dictionary. For the purpose of estimating a
parsity profile, a single covariance is obtained by averaging the

ictionary-dependent estimates. 

Beamforming simulations for DOA estimation are used to

emonstrate the usefulness of multi-dictionary SBL. A lower RMSE

or DOA estimates was obtained when multiple frequency obser-

ations were processed using SBL-CC. The SBL-CC algorithm also

as able to correctly recover DOAs in the presence of spatial alias-

ng. This was demonstrated using both simulated and experimental

ata. 

Whitening of the data with heteroscedastic noise resulted in

bservations generated by different dictionaries. We processed

hem using the multi-dictionary SBL algorithms to improve signif-

cantly the RMSE performance especially in the low SNR regime. 
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