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Sparse linear arrays such as co-prime and nested arrays can resolve more sources than the number

of sensors. In contrast, uniform linear arrays (ULA) cannot resolve more sources than the number

of sensors. This paper demonstrates this using Sparse Bayesian learning (SBL) and co-array

MUSIC for single frequency beamforming. For approximately the same number of sensors, co-

prime and nested arrays are shown to outperform ULA in root mean squared error. This paper

shows that multi-frequency SBL can significantly reduce spatial aliasing. The effects of different

sparse sub-arrays on SBL performance are compared qualitatively using the Noise Correlation

2009 experimental data set. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

Compressive sensing is a processing paradigm to esti-

mate high dimensional sparse vectors using as few measure-

ments as possible. Significant research has been performed

to develop algorithms for this task, some of which include

basis pursuit,1 matching pursuit,2 and sparse Bayesian learn-

ing.3 These algorithms have been used in various physical

applications for parameter estimation,4–7 including beam-

forming.8–10 We use the term beamforming and direction-of-

arrival (DOA) estimation interchangeably in this paper. In

these applications, the traditional (usually) non-linear prob-

lem is reformulated as an underdetermined linear problem

and its sparse solutions provide the required parameter

estimates.

Sparse Bayesian learning (SBL)3,5 is a compressive

sensing technique that uses a Bayesian framework to find a

sparse solution to an underdetermined linear problem. In the

context of DOA estimation using uniform linear array

(ULA) sensor data, it has been applied to resolve nearby

sources.8,11,12 A limitation of ULA is that the maximum

number of resolvable sources is limited by the number of

sensors. This is confirmed for SBL as well using a Cram�er-

Rao based analysis.13–15

SBL has many advantages over other array processing

methods. SBL estimates the covariance of the weights rather

than the weights themselves, significantly reducing the num-

ber of parameters to estimate. SBL uses iterative updates for

parameter estimation that is computationally faster compared

to convex optimization used by basis pursuit. Algorithms

such as MUSIC require many snapshots to build the covari-

ance matrix, whereas SBL can show better performance with

fewer snapshots. It is also less sensitive to array geometry,

unlike MUSIC, which typically requires ULA.

Recently, various sparse array geometries have been pro-

posed such as nested arrays16 and co-prime arrays,17 which

can resolve more sources than the number of sensors.18–25 This

has been demonstrated with MUSIC,26–29 SBL,30 and justified

theoretically31,32 using the co-array covariance matrix.

We use SBL to directly process observation vectors

from nested and co-prime arrays without constructing a co-

array based covariance matrix. We also apply MUSIC to the

contiguous portion of difference co-array. For plane wave

arrivals, the difference co-array covariance matrix is

Hermitian Toeplitz. Thus, this covariance matrix can be

formed by identifying the relevant entries in the physical

sensor array covariance matrix.

We show using simulations that both SBL and co-array

MUSIC can identify more sources than the number of sen-

sors. A root mean squared error (RMSE) comparison of

ULA, nested and co-prime arrays, all with the same number

of sensors, is performed with respect to number of snapshots,

number of sources, and signal-to-noise ratio. We demon-

strate utility of sparse arrays in combination with multi-

frequency SBL by processing Noise Correlation 2009

(NC09) experiment data.33 Various sparse arrays including

co-prime, nested, and ULA (with large inter-sensor spacing)

are constructed by appropriately sampling the full ULA. The

robustness of DOA estimation is increased by processing

multi-frequency data.34,35 Parts of this paper are published in

a conference proceeding.36

This paper is organized as follows: Sec. II gives a brief

overview of the signal model and co-prime and nested sparse

linear arrays. It also discusses co-array processing and the

MUSIC algorithm. The SBL algorithm is presented in Sec.

III and a pseudocode is provided for implementation. The

multi-frequency SBL is also discussed. Beamforming simu-

lations are performed in Sec. IV to study SBL and MUSIC

with respect to various parameters while processing observa-

tions from sparse arrays. Section V applies SBL to processa)Electronic mail: santosh.nannuru@iiit.ac.in
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experimental ship noise data for DOA estimation using vari-

ous array geometries. Conclusions are discussed in Sec. VI.

II. SIGNAL MODEL AND SPARSE LINEAR ARRAYS

A. Signal model

The lth observation snapshot yl recorded at a sensor

array due to impinging plane waves is given by

yl ¼ Axl þ nl; (1)

where yl 2 C
N

, N is the number of sensors in the array,

xl 2 C
M, M is the number of grid points in which the angle

space [�90, 90] is divided, and nl is the additive zero-mean

circularly symmetric complex Gaussian noise. The vector

xl is sparse and has at most K � M non-zero entries

corresponding to the complex amplitudes of the impinging

waves. Moreover, xl is a zero-mean random vector such

that Eðxlx
H
l Þ ¼ C; Eðnln

H
l Þ ¼ r2I; Eðxln

H
l Þ ¼ 0, where

C ¼ diagðcÞ and c 2 RM is a sparse vector. The objective is

to find the unknown vector xl given the observations yl and

the dictionary A. Typically multiple (L) snapshots are proc-

essed Y ¼ ½y1;…; yL�.
The columns of dictionary A are composed of the steering

vectors corresponding to the M discrete angles fh1;…; hMg.
For a narrow-band plane wave signal of wavelength k and sen-

sor locations given by fd1;…; dNg, the mth column is

am ¼ 1; ej2pðd1=kÞ sinðhmÞ;…; ej2pðdN=kÞ sinðhmÞ
� �T

; (2)

for m¼ 1…M, where hm is the mth discretized angle. The

signal wavelength and sensor locations are assumed to be

known.

Let the sensor positions in an array be given by dn¼ znd
where the integer zn is the normalized sensor location of nth

sensor and d is the minimum sensor spacing. Define the set

S ¼ fznjn ¼ 1;…;Ng. A ULA consists of uniformly spaced

sensors with zn¼ n and

SULA ¼ f1; 2;…;Ng: (3)

Typically the minimum spacing d is chosen to be d ¼ k=2.

We now briefly discuss the sparse linear arrays of co-prime17

and nested arrays.16

B. Co-prime array

A co-prime array consists of two ULAs with spacing

Nc
1ðk=2Þ and Nc

2ðk=2Þ such that Nc
1 and Nc

2 are co-prime (i.e.,

their greatest common divisor is 1). Also let Nc
1 > Nc

2 with-

out loss of generality. The sensors for a co-prime array are

given by the following set

Scoprime ¼ f1;Nc
2 þ 1;…; ðNc

1 � 1ÞNc
2 þ 1g

[ fNc
1 þ 1; 2Nc

1 þ 1;…; ð2Nc
2 � 1ÞNc

1 þ 1g: (4)

A co-prime array has a total of ðNc
1 þ 2Nc

2 � 1Þ sensors.

Figure 1 shows an example of co-prime array with Nc
1 ¼ 5;

Nc
2 ¼ 2.

C. Nested array

A nested array also consists of two ULAs, the dense

ULA portion with Nn
1 sensors (spacing k=2), and the second

ULA portion with Nn
2 sensors [spacing ðNn

1 þ 1Þk=2]. The

sensors for a nested array are given by

Snested ¼ f1; 2;…;Nn
1g

[ fðNn
1 þ 1Þ; 2ðNn

1 þ 1Þ;…; ðNn
1 þ 1ÞNn

2g: (5)

A nested array consists of a total of ðNn
1 þ Nn

2Þ sensors. An

example of a nested array is shown in Fig. 1 with

Nn
1 ¼ 4;Nn

2 ¼ 3.

D. Co-array and holes

Let the set D denote the difference set (co-array) corre-

sponding to the set S defined as

FIG. 1. Used co-prime and nested arrays and their corresponding difference co-arrays. In the physical array, the shaded and full circles correspond to the first

and second ULA in each sparse array corresponding to the set S. In the difference co-array, we construct the three sets Dþ, Uþ, and Vþ. The empty circles in

the difference co-array show the holes. For co-prime array Nc
1 ¼ 5;Nc

2 ¼ 2 and for nested array, Nn
1 ¼ 4;Nn

2 ¼ 3.
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D ¼ fzi � zjj1 � i; j � Ng; (6)

containing all the pairwise differences of the normalized sen-

sor locations. In order to more carefully study the structure

of D, we adopt the following definition:37

Definition 1. For a sensor array S, with difference coarray
D, the maximum central contiguous ULA in D is defined
as U ¼ frjf�jrj;…; 0;…; jrjg �Dg. Moreover, the
shortest ULA containing D is denoted as
V ¼ frjminðDÞ � r � maxðDÞg.

For any array we have U � V, where � denotes the

subset operator. For certain array geometries (such as ULA

or nested arrays), the equality U ¼ V ¼D holds, meaning

that the difference co-array does not have any “holes.”16

However, in certain cases (such as coprime arrays), the dif-

ference co-array can contain holes, i.e., U � V, and U 6¼ V.

An example of U;V;D for a co-prime array and a nested

array is shown in Fig. 1. Let Uþ;Vþ, and Dþ represent the

nonnegative subsets of U; V, and D.

E. Co-array processing

Traditional DOA estimation methods such as MUSIC

are based on the second order moment of the data38 and

work for ULAs. The number of sources that can be

resolved depends on the degrees of freedom in the covari-

ance matrix (which is equal to the number of sensors for a

ULA). In contrast, for certain sparse arrays such as co-

prime array, the covariance matrix has more degrees of

freedom than the number of sensors in the sparse array.

Exploiting this property of the second order moment

allows us to resolve more sources than the number of sen-

sors for a sparse array.

From Eq. (1), the N�N dimensional covariance matrix

of yl is

RS ¼ Eðyly
H
l Þ ¼ ACAH þ r2I

¼
X

m2M
cmamaH

m þ r2I; (7)

whereM represent the active sources (non zero elements of

c). The elements of the matrix amaH
m has entries of the form

ejð2p=kÞðdn1
�dn2

Þ sinðhmÞ for zn1
; zn2
2 S. Thus, the entries only

depend on the differences in sensor locations. We make the

following observations:

(1) The upper triangular part (including the diagonal) of the

matrix RS corresponds to the set Dþ, and the lower

triangular part (including the diagonal) corresponds

the set D�, where D� denotes the nonpositive subset

of D.

(2) For a ULA, the covariance matrix is Hermitian Toeplitz

and can be fully constructed given its first column rS.

(3) For sparse arrays, RS is not Hermitian Toeplitz

in general, but by appropriately choosing from its

entries we can construct a column vector rUþ for the

central contiguous ULA segment Uþ and the corre-

sponding jUþj � jUþj dimensional Hermitian Toeplitz

matrix RUþ

RUþ ¼

rUþ;0 rH
Uþ;1

	 	 	 rH
Uþ;jUþj

rUþ;1 rUþ;0 	 	 	 rH
Uþ;jUþj�1

..

. ..
. . .

. ..
.

rUþ;jUþj rUþ;jUþj�1 	 	 	 rUþ;0

0
BBBBB@

1
CCCCCA;

(8)

where rUþ;n denotes the nth element of vector rUþ .

In a practical setting, however, only a finite number of

snapshots are available. We compute the sample covariance

matrix (SCM) using the samples yl, for l¼ 1,…, L

R̂S ¼
1

L

XL

l¼1

yly
H
l : (9)

From R̂S we can form a sample auto correlation vector r̂Uþ

(and hence R̂Uþ) for the Uþ part of the contiguous co-array

by averaging of relevant elements from R̂S, see Refs. 28 and

37. The nth entry of r̂Uþ can be computed as

r̂Uþ;n ¼
1

kn

X
n1�n2¼n

R̂S n1; n2ð Þ; (10)

kn ¼ jfðn1; n2Þjn1 � n2 ¼ n; n1; n2 2 Sgj: (11)

For example, for the co-prime array shown in Fig. 1,

jUþj ¼ 12, and the values of kn for n¼ 1 to 12 are 8, 2, 5, 2,

4, 3, 3, 1, 2, 1, 2, and 1. Note that the number of terms kn

contributing towards the average in Eq. (10) are significantly

different, thus complicating the statistical properties of R̂Uþ .

The empirical SCM R̂Uþ can be used with MUSIC. The con-

tiguous difference co-array Uþ avoids aliasing as well as

provides higher degrees of freedom to resolve more sources

than sensors (N), while the large aperture (jUþj) provides

resolution gain.

F. MUSIC

Direct application of MUSIC to sparse array data can

resolve few sources as it is limited by the number of sensors.

To resolve more sources than the number of sensors, MUSIC

can be applied to the central ULA portion of the co-array26,28

or to the covariance matrix obtained after co-array

interpolation.37

Given an empirical covariance matrix R and the number

of sources K, if Bn is the N� (N – K) dimensional matrix of

its noise eigenvectors, then the MUSIC spectrum is given by

P hð Þ ¼ 1

a hð ÞHBnBH
n a hð Þ

; (12)

where a(h) is the steering vector at angle h. To apply

MUSIC, the number of sources K is required to be known.

III. SPARSE BAYESIAN LEARNING

The multi-snapshot signal model is given by

Y ¼ AXþ N; (13)
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where the noise N ¼ ½n1;…; nL� is zero-mean complex

Gaussian with variance r2; nl 
 CN ðnl; 0; r2IÞ; X ¼ ½x1;
…; xL� is the matrix of sparse weights with all the columns

sharing the same sparsity profile. The observations are

assumed to be independent across snapshots giving the

multi-snapshot likelihood function

pðYjXÞ ¼
YL

l¼1

pðyljxlÞ ¼
YL

l¼1

CN ðyl; Axl; r
2IÞ: (14)

Prior: In SBL, the sparse weights are treated as zero-mean

complex Gaussian random vectors with diagonal covariance

C ¼ diagðc1…cMÞ ¼ diagðcÞ. The prior model is given by

pðXÞ ¼
YL

l¼1

pðxlÞ ¼
YL

l¼1

CN ðxl; 0;CÞ: (15)

Evidence: From the Gaussian prior [Eq. (15)] and likelihood

[Eq. (14)], the evidence p(Y) is Gaussian and given by

pðYÞ ¼
ð

pðXÞpðYjXÞdX ¼
YL

l¼1

CN ðyl; 0;RyÞ; (16)

where Ry ¼ r2Iþ ACAH. The SBL approach is to estimate

the diagonal entries of C by maximizing the (log) evidence

ðĉ1…ĉMÞ ¼ arg max log
c

pðYÞ

¼ arg max
c

�
XL

l¼1

ðyH
l R�1

y yl þ log jRyjÞ
( )

: (17)

Differentiating the above objective function and equating the

derivatives to zero gives the fixed point update rule3,5,11

cnew
m ¼ cold

m

1

L

jjYHR�1
y amjj22

aH
mR�1

y am

¼ cold
m

Tr SyR
�1
y amaH

mR�1
y

h i
aH

mR�1
y am

; (18)

where Sy ¼ ð1=LÞYYH is the SCM and Tr[	] denotes the trace

operator for a matrix. The pseudocode of the SBL algorithm is

given in Table I. The noise variance is also required to be esti-

mated if unknown, see Sec. III A. The parameters e and Nt are

the convergence error threshold and number of iterations of the

algorithm. The unknown vector c is initialized to the un-

normalized conventional beamformer (CBF) output.

To resolve more sources than the number of sensors,

SBL algorithm in Table I can directly be applied to observa-

tions from co-prime and nested arrays. This is because the

SBL update rule in Eq. (18) depends on the sample covari-

ance matrix Sy, which has more degrees of freedom than the

raw observations Y. The dimension of the covariance matrix

required by SBL is OððN1 þ N2Þ2Þ.
By comparison, MUSIC based on direct SCM can only

find up to OðN1 þ N2Þ sources as there are at most OðN1

þN2Þ eigenvalues. MUSIC with co-array based covariance

can resolve more sources than number of sensors.26 This

requires construction of a higher dimensional covariance

matrix of size OððN1N2Þ2Þ from the smaller OððN1 þ N2Þ2Þ
dimensional direct SCM. SBL does not rely on eigendecom-

position and is thus able to extract a higher number of sour-

ces from the smaller, direct SCM itself. Alternately, a

covariance based LASSO39 could recover more sources but

the computational costs would be higher than for SBL (see

Ref. 11, Fig. 3).

A. Noise estimate

We use a stochastic maximum likelihood based method

to estimate the noise variance r2. Let AM be formed by K
columns of A indexed byM, where the setM indicates the

location of non-zero entries of x with cardinality jMj ¼ K.

The noise variance estimate is then8,11,40

r̂2 ¼
Tr IN � AMAþM
� �

Sy

� �
N � K

; (19)

where AþM denotes the Moore-Penrose pseudo-inverse. Note

that this noise estimate is not valid for more sources than

sensors (K�N). To keep simulations simple, in Sec. IV it is

assumed that the noise is known exactly and we focus on

estimating c. The estimate in Eq. (19) requires knowledge of

number of sources K, which could be obtained using model

order selection methods41 such as AIC and BIC.

B. Multi-frequency SBL

Let observations be available at multiple frequencies

given by

Yf ¼ Af Xf þ Nf ; f ¼ 1; 2;…;F; (20)

where Yf, Af, Xf, and Nf are, respectively, the observations,

dictionary, prior, and the noise at the fth frequency.

The observations Y1:F ¼ ½Y1;…;YF� and the noise N1:F

¼ ½N1;…;NF� are assumed to be independent across fre-

quencies. Following Eq. (14), the likelihood for fth fre-

quency is given as

TABLE I. SBL algorithm pseudocode: Input consists of data Y, dictionary

A, and if available, noise variance r2. Convergence is controlled by the error

threshold � and maximum number of iterations Nt.

SBL Algorithm

1. Input: Y, A, r2 (optional)

2. Parameters: �¼ 10�3, Nt¼ 500

3. Initialization: cold
m ¼ aH

mSyam; 8m
4. for i¼ 1 to Nt

5. Compute: Ry ¼ r2IN þAColdAH

6. cnew
m update 8m using Eq. (18)

7. r2 update using Eq. (19)

8. If jjcnew � coldjj1=jjcoldjj1 < �, break

9. cold ¼ cnew; Cold ¼ diagðcnewÞ
10. end

11. Output: c, r2 (optional)

2722 J. Acoust. Soc. Am. 144 (5), November 2018 Nannuru et al.



pðYf jXf Þ ¼
YL

l¼1

CN ðyf l; Af xf l; r
2
f IÞ; (21)

where r2
f is the noise variance at fth frequency.

Prior: Assuming the source variance to be same across fre-

quencies (i.e., flat source power spectrum) the prior is

pðXf Þ ¼
YL

l¼1

CN ðxf l; 0;CÞ; f ¼ 1; 2;…;F: (22)

The flat power spectrum assumption implies that the covari-

ance parameter C is the same across frequencies. This

reduces the number of unknown parameters to be estimated

while enforcing a common sparsity profile12,34,42 across all

the observations.

Evidence: The multi-frequency evidence is

pðY1:FÞ ¼
YF

f¼1

ð
pðXf ÞpðYf jXf ÞdXf

¼
YF

f¼1

YL

l¼1

CN ðyf l; 0;Ryf
Þ; (23)

where Ryf
¼ r2

f Iþ Af CAH
f . Proceeding as before [see Eq.

(17)], to estimate C we maximize the (log) evidence

ðĉ1…ĉMÞ ¼ argmax log
c

pðY1:FÞ

¼ argmax
c

�
XF

f¼1

XL

l¼1

ðyH
f lR
�1
yf

yf lþ log jRyf
jÞ

8<
:

9=
;:

(24)

We get the following update rule by differentiation

cnew
m ¼ cold

m

1

L

XF

f¼1

XL

l¼1

jyH
f lR
�1
yf

af mj2

XF

f¼1

aH
f mR�1

yf
af m

: (25)

We refer to this multi-frequency SBL as SBL MF1. Alternately,

we could process observations from each frequency indepen-

dently and average the estimated c across frequencies. We will

call this SBL MF2. A simulation example of these multi-

frequency SBL methods is shown later in Sec. IV D.

Remark: A detailed description of multi-frequency SBL,

including simulations and its impact on spatial aliasing, is dis-

cussed in another paper.12 Simulations there clearly show the

advantage of using multiple frequencies to get processing gains

especially at low signal-to-noise ratio (SNR). Additionally, it is

demonstrated that when processing multiple frequencies, since

the location of aliased peaks is frequency dependent, jointly

processing multi-frequency data using SBL can significantly

suppress spatial aliasing.

IV. SIMULATIONS

A. Gram matrices

In simulations, we apply SBL to measurements obtained

from three array geometries: uniform linear array (ULA),

co-prime array, and nested array. These configurations are

inspired from the array geometry constraints we have for the

experiment data in Sec. V. Specifically we consider the co-

prime array with Nc
1 ¼ 5;Nc

2 ¼ 2 for a total of eight sensors

and the nested array is constructed with Nn
1 ¼ 4;Nn

2 ¼ 3 for

a total of seven sensors. The full ULA has 16 sensors,

whereas ULA has 8 sensors, both have inter-element spacing

d. The sensor positions and the total array length (i.e., aper-

ture) for the four cases are given in Table II. We use

d ¼ k=2.

The corresponding Gram matrices jAHAj for each of the

arrays is shown in Fig. 2. The angle space [�90, 90] is dis-

cretized using a grid of size M¼ 360 giving a resolution of

Dh¼ 0.5�. We note that due to the specific sensor arrange-

ment, co-prime and nested arrays have larger aperture than

ULA, see Table II. Though co-prime and nested arrays have

much larger apertures than ULA, they never cause aliasing

(since d ¼ k=2, the aperture of ULA cannot be increased

without causing aliasing).

B. Resolving more sources than sensors

The SBL algorithm in Sec. III is applied for DOA esti-

mation. We simulate observations assuming multiple sources

with equal source power of 1, equally spaced between �60�

and 60�. The sources are always on a grid point.

The mean of ĉ estimate from 1000 Monte Carlo (MC)

runs of SBL is shown in Fig. 3 for the three arrays and three

different sparsity values, i.e., K¼ 4, 8, and 10 sources. Data

is processed using L¼ 100 snapshots with an SNR of 20 dB.

When non-zero, the true value of c is 1. The co-prime and

nested arrays can resolve all the DOAs even when more

sources are present than the number of sensors (K¼ 10,

N¼ 7 or 8), while the ULA solution is not sparse. The mean

ĉ could be less than 1 as the power spreads out in neighbor-

ing grid points due to high coherence of steering vectors.

The last column shows the normalized co-array MUSIC

spectrum discussed in Secs. II E and II F applied to the co-

prime array in Table II. As can be seen, co-array MUSIC can

also identify more sources than the number of sensors. The

interpolated co-array has jUþj ¼ 12 and hence co-array

MUSIC cannot identify more than 11 sources.

C. DOA estimation

The performance of SBL algorithm processing measure-

ments from different array types can be quantified using the

RMSE of the DOA estimates. The DOAs are estimated as

the location of the strongest K peaks in c. The DOA RMSE

is calculated as

TABLE II. The three arrays used in simulations along with the location of

the sensors and the array aperture.

Array Sensor positions Length

Full ULA {1, 2,…, 16}d 15 d

ULA {1, 2,…, 8}d 7d

Co-prime {1, 3, 5, 6, 7, 9, 11, 16}d 15d

Nested {1, 2, 3, 4, 5, 10, 15}d 14d
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nsim

1

K

XNsim

i¼1

XK

k¼1

hi;k � ĥi;k

� �2

vuut ; (26)

where hi and ĥi are the true and the estimated DOAs for the

ith MC simulation run, Nsim is the number of MC runs, and

K DOAs are present.

The DOA RMSE versus number of snapshots is in Fig.

4 for K¼ 4, 8, and 12 sources. SNR¼ 0 dB. For K¼ 4, ULA

has the lowest RMSE. For K¼ 8 and K¼ 12, both co-prime

and nested arrays can localize all the sources, whereas the

ULA is unable to localize all the sources (see Fig. 3). As a

result, the co-prime and nested arrays have lower error and

the ULA has high error (not visible in the current plot).

FIG. 2. (Color online) Gram matrices

jAHAj for the three array configura-

tions: ULA, Co-prime, and Nested.

The arrays have 8, 8, and 7 sensors,

respectively, and grid size M¼ 360.

FIG. 3. (Color online) Mean c over 1000 MC runs for array configurations of ULA, co-prime, and nested. Number of snapshots L¼ 100 and SNR is 20 dB.

The red marks indicate true source locations.
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The RMSE versus SNR plot is shown in Fig. 5. The full

ULA has double the number of sensors than any of the other

arrays and hence has the lowest RMSE among all of them.

The difference in the plots of full ULA and other arrays indi-

cates the loss in performance due to reduced number of sensors

in the corresponding array. Among other arrays, for K¼ 4,

ULA has the lowest RMSE. The lower RMSE of ULA for

fewer sources (K¼ 4) in Figs. 4 and 5 could be due to higher

redundancy in the covariance matrix. For K¼ 8 and K¼ 12,

the ULA cannot resolve all the sources whereas the nested and

co-prime array can resolve all the sources and have similar

errors. We also compute RMSE as a function of the number of

sources (K). For this simulation, the number of snapshots

L¼ 100 is fixed and SNR is selected from 0, 10, and 20 dB as

seen in Fig. 6. The ULA can resolve up to 7 sources, whereas

both nested and co-prime arrays can resolve even more.

D. Multi-frequency processing

When processing multiple frequencies, SBL (see Sec.

III B) can avoid spatial aliasing since the location of aliased

peaks changes with frequency. A demonstration of this is

shown in Fig. 7. The top panel displays estimated signal

power per frequency as a function of arrival angles estimated

using CBF, SBL MF1, and SBL MF2. The bottom panel

shows the average of the signal power across all the frequen-

cies. Observations are simulated using a ULA of N¼ 16 sen-

sors with spacing corresponding to a cutoff frequency of

750 Hz. L¼ 100 snapshots are generated at 10 dB SNR for

each frequency in the set {500, 510,…, 1500} Hz. True sour-

ces with unit signal power are located at �60�, �20�, 20�,
and 60�. For both CBF and SBL MF2, aliasing starts to

appear around 800 Hz. For CBF, aliasing results in broaden-

ing of the peaks in the average power spectrum, whereas for

SBL MF2, it results in spurious peaks in addition to the

peaks at true source location. SBL MF1 is able to avoid both

these problems and shows sharp peaks at correct source

locations.

V. EXPERIMENT DATA

A. Data description

We use the NC09 experiment data set33 for processing.

The experiment was carried out on the Coronado Bank

located south-west of Point Loma, San Diego, CA. Data was

recorded on four equally configured vertical line arrays

(VLAs) with VLA2 used for processing, see Fig. 8. The tran-

sect of the R/V New Horizon (source of opportunity) is east-

erly of the VLA bearing line and passes each VLA at port

side within 
100 m proximity. The 52 m long vessel transits

at a constant speed of 2.2 m/s. Hydrophone 1 is 7 m above

the seafloor and all 16 elements are used for processing. The

element spacing of d¼ 1 m corresponds to a design fre-

quency of 750 Hz at 1500 m/s sound speed.

The 30 min data is first down sampled from 25 000 Hz to

a sampling frequency of 5000 Hz. Next, 4393 snapshots are

computed continuously from the data with an FFT length of

4096 samples (0.8 s) and 50% overlap. Then, L¼ 6 snapshots

are designated to segments of 
 2.9 s duration, resulting in

732 partially overlapping segments for the entire data set.

The data in the segments are designated for further

FIG. 4. (Color online) DOA RMSE versus L for ULA, co-prime, and nested

arrays. SNR is set to 20 dB.

FIG. 5. (Color online) DOA RMSE versus SNR for ULA, co-prime, and

nested arrays. L¼ 100 snapshots.

FIG. 6. (Color online) DOA RMSE versus K for ULA, co-prime, and nested

arrays. L¼ 100 snapshots.
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processing (e.g., L¼ 6 snapshots are used to construct a

covariance). For conventional processing, each snapshot is

windowed with a Kaiser window, where b¼ 4.7. The mean

soundspeed over the array is 1492 m/s obtained from a

nearby conductivity, temperature, and depth (CTD) cast. The

mixed surface layer (1504–1506 m/s) extends to a depth of

22 m, followed by a downward refracting profile.

B. Data processing

We process data using the full 16 element VLA as well

as from its subarrays shown in Table III. Specifically, we

construct a co-prime array with Nc
1 ¼ 5;Nc

2 ¼ 2 resulting in

eight sensor subarray, and a nested array with Nn
1 ¼ 4;Nn

2

¼ 3 giving a seven sensor subarray. Additionally, we con-

struct two ULAs from this array, ULA1 consists of the first

8 out of 16 elements of the original array, whereas ULA2

consists of every other sensor. Thus, both ULAs have eight

sensors, but ULA2 has twice the aperture relative to ULA1.

The aperture of co-prime and nested arrays is comparable to

that of ULA2. The specific choice of co-prime and nested

arrays is made to maximize their apertures using the given

16 element VLA. ULA1 was chosen to study the effect of a

dense ULA but with limited aperture. The undersampled but

uniform spaced ULA2 was chosen to demonstrate ability of

multi-frequency SBL (SBL MF1) to combat spatial aliasing.

All the arrays have approximately the same number of sen-

sors and hence the same array gain.

We use multi-frequency SBL discussed in Sec. III B to

process the experiment data. The noise estimate [Eq. (19)]

is used with K¼ 4 because there are always at least four

relatively strong DOAs as seen from the Bellhop43 model in

Fig. 9(b). Though the number of DOAs are changing over

time, we use a fixed value of K for uniformity of processing

across the whole 30 min data.

The outputs of CBF, SBL, and MUSIC for the full VLA

data are shown in Figs. 9(c), 9(d), and 9(e). For CBF

and MUSIC, their spectrum are averaged over 650–750 Hz.

For multi-frequency SBL 80–1000 Hz is used. A reduced

bandwidth is used for CBF and MUSIC because for lower

frequencies, the resolution is low and higher frequencies

suffer from aliasing. Increasing bandwidth for CBF

and MUSIC will blur the image in Fig. 9(c). SBL does

FIG. 7. (Color online) Multi-frequency processing: The signal power with changing frequency and DOA when four sources are present obtained using (a)

CBF, (b) SBL MF1, and (c) SBL MF2. The bottom panel shows the plot of the average energy across the frequencies. SNR is 10 dB and L¼ 100 snapshots are

used per frequency.

FIG. 8. (Color online) NC09 experiment map showing location of VLA2

(star) and trajectory (diamond) of the vessel over 30 min. The ship follows a

path of approximately constant depth as indicated by the 150 m contour.

TABLE III. The four sub-arrays used for processing NC09 experiment data.

The location of the sensors and the array apertures are indicated.

Array Sensor positions Length

ULA1 {1, 2, 3, 4, 5, 6, 7, 8}d 7d

ULA2 {1, 3, 5, 7, 9, 11, 13, 15}d 14d

Co-prime {1, 3, 5, 6, 7, 9, 11, 16}d 15d

Nested {1, 2, 3, 4, 5, 10, 15}d 14d
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not suffer from these issues as it simultaneously processes

all frequencies giving high resolution and significantly

suppresses aliasing.12 The DOA locations obtained

using SBL closely matches the Bellhop model output in

Fig. 9(b).

The latter half of the event (from 15 to 30 min, see also

Fig. 4 in Ref. 33) has more multipaths (DOAs) as the ship

moves away from the array. We process data from the full

array and the four sub-arrays (see Table III) with the

estimated angular source power versus time in Fig. 10. All

the sub-arrays will suffer from reduced array gain compared

to the full array as the number of sensors is approximately

halved. Only SBL results are shown as the resolution of CBF

and MUSIC are poor due to incoherent spectrum averaging.

The sub-arrays in general are expected to have fewer

DOA detections relative to the full array because of the

reduced array gain. The co-prime, nested, and ULA2 sub-

arrays are able to resolve the DOAs as well as the full ULA,

FIG. 9. (Color online) NC09: Evolution of DOAs with time as the ship moves. (a) Distance of ship from VLA. (b) Simulated DOAs using Bellhop. (c) CBF,

(d) SBL, (e) MUSIC. For CBF and MUSIC, the spectrum are averaged over 650–750 Hz, while for SBL 80–1000 Hz is used.

FIG. 10. (Color online) NC09: Evolution of DOAs with time (15–30 min portion from Fig. 9). The angular source powers are estimated using multi-frequency

SBL (SBL MF1) for (a) full ULA, (b) co-prime, (c) nested, (d) ULA1, and (e) ULA2. The beampatterns corresponding to the vertical line around 22 min are

shown in Fig. 11.
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see Fig. 10. This is highlighted around time 23 mins, indicated

by the red vertical bar with the corresponding estimated c ver-

sus angle in Fig. 11. The full ULA can identify up to 7 DOAs,

whereas the co-prime, and ULA2 sub-arrays identify slightly

fewer DOAs. The performance of ULA1 suffers significantly

when there are more than four DOAs. This is because ULA1

has the smallest aperture of them all and its ULA geometry

limits the number of sources it can identify.

In comparison, the ULA2 has twice the aperture of ULA1.

Though ULA2 will suffer from aliasing for some of the higher

frequencies due to the multi-frequency SBL processing, these

get suppressed and only the sparse support common across all

the frequencies is retained. The aliasing suppression property

of multi-frequency SBL has been discussed in the litera-

ture.12,42 Thus, multi-frequency SBL can combat spatial alias-

ing and provide performance similar to that of sparse arrays

such as co-prime and nested arrays. However, it is important to

note that the sparse ULA2 cannot identify more sources than

sensors, unlike co-prime and nested arrays.

VI. CONCLUSIONS

Using beamforming simulations, we showed that SBL

and co-array MUSIC are able to resolve more sources than

the number of sensors when processing co-prime and nested

array data. The RMSE analysis of DOA estimates showed

that co-prime and nested arrays outperform an ULA with the

same number of sensors, especially when the number of

sources is close to the number of sensors or higher. It was

seen that by making use of multi-frequency observations,

SBL can significantly reduce spatial aliasing.

The NC09 experiment data was used to qualitatively com-

pare the sparse arrays for DOA estimation using 16 element

ULA data. The data was processed using multi-frequency SBL

over approximately 1 kHz bandwidth for various sparse sub-

arrays. It was observed that the sparse arrays can accurately

identify DOAs while avoiding spatial aliasing.
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