Results from a prototype tetrahedral array for tracking sound sources in shallow water

Kay Gemba and Eva-Marie Nosal
Dept. of Ocean and Resources Engineering
Honolulu, HI 96822
gemba@hawaii.edu
Motivation

• Use passive acoustics in a near shore environment to detect sources by their characteristic sound (signature)
 – No environmental impact
 – Sources don’t know they are being detected
 – Broadband, mid- to high frequency sources (1kHz to 40 kHz)

• Goals
 – Detect, classify and track underwater broadband sources
 – Robustness over accuracy
 – Develop a computational inexpensive model
 – “Small scale” (few hydrophones)
 – TDOA, Likelihood function*, Beamforming

* 5aEA12. Diver Monitoring using the Hawaii Experimental Acoustic Range
Hydrophone Configuration

• 4 hydrophones for each Array
 – 3 in the horizontal plane
 – 1 raised from the center
 – Can be steered both vertically and horizontally

• Phase center is center of spherical coordinate system
 – Azimuth: Theta [0-360] deg
 – Elevation: Phi [0-180] deg
Model Validation

- Linear up-chirp from 20-40 kHz @ 192 kHz
- Length: 0.015 s duration

- Source Location: \(\theta = 40^\circ, \phi = 70^\circ, d = 100 \text{ m} \)
 - Plane wave assumption* (radius = 0.9 m)

- \(\lambda/2 \) frequency: 850 Hz
 - General problem with grating lobes

* Array Signal Processing by Don H. Johnson: \(\approx 60 \times \text{radius} \)
Model Results
Beamformer Output

Scaled Image Plot

Theta [deg]
0 50 100 150 200 250 300 350

Phi [deg]
0 20 40 60 80 100 120 140 160

Scaled Image Plot

Theta [deg]
25 30 35 40 45 50 55

Phi [deg]
95 100 105 110 115 120 125

dB
-64 -62 -60 -58 -56 -54 -52
Model Results
Directivity Plot
Source with white Noise

Scaled Image Plot, Source at Theta = 40.0 deg, Phi = 70.0 deg, SNR = 10.0 dB

Theta Location (Source as 40 Deg) versus SNR

Phi Location (Source as 70 Deg) versus SNR
HPW - Resolution

Horizontal HPW
Original Range: 0-12 deg

Vertical HPW
Original Range: 0-16 deg
Experimental Setup

- **Location:** Makai Research Pier
- **2 Arrays (5 phones each)**
 - Reson omnidirectional TC4032 Hydrophones, Frequency Response +/- 1 dB
 - Flexible configuration
 - 192 kHz digitized at 24 bit
 - Anti aliasing filter
 - 10 Hz high pass filter

- **Source:**
 - Depth: 1 m
 - SL: ~ 90 dB re. 1 μPa
 - Chirp Length: 0.150 s
 - Sweep: 20 to 40 kHz
Results – Makai Exp.

• Source 1 (-93 deg) – 1 deg search: -89 deg – ¼ deg search: -92.5 deg

• Source 2 (-93.6 deg) – 1 deg search: -93 deg – ¼ deg search: -93.5 deg

• Source 3 (-94.7 deg) – Any search: -100 deg

• Source 4 (-36 deg) – 1 deg search: -42 – ¼ deg search: -36°

$\theta = 271°$

$\Phi = 78°$

$\theta = 267.5°$

$\Phi = 79.9°$
Conclusions

• Beamformer is accurate as long as there are no side reflections
 – Horizontal source location can be determined with bottom or surface reflections (subject to environmental conditions)

• Change array configuration to a circular array (Application dependent)
 – triangulation
 – Reduce computational cost
 – Increase horizontal resolution

• Experiment with 3 arrays in an open shallow water environment
 – Location: South Shore Oahu, Kilo Nalu Ocean Observatory
 – Goal: Identify likely multipath models and construct a model utilizing a Likelihood function along with TDOA and focused beamforming

• Noisy environments
 – Energy Detectors (Teager-Kaiser Operator)
 – Edge detector in Spectrograms (e.g. Laplacian)