UA 2014 2nd International Conference and Exhibition on Underwater Acoustics 22-27 June 2014, Rhodes, Greece

1

Estimating source spectra from recordings made in a reverberant underwater channel

Kay Gemba and Eva-Marie Nosal Dept. of Ocean and Resources Engineering Honolulu, HI 96822 gemba@hawaii.edu

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award Number 2008-ST-061-ML0002.

Motivation

- The performance of a passive acoustic detector can be improved by knowledge of the anechoic signature of the target and the noise environment
- No procedure for source characterization in reverberant environments
 - Anechoic facilities are not available
- Goal: Develop a robust and practical dereverberation method for underwater pool experiments
 - Method should be applicable to a variety of sources such as AUVs, Surface robots, Gliders, UBA and others without any special equipment or configurations

Problem Formulation

- Source levels recorded in reverberant environments are overestimate due to early reflections and late reverberation
- A solution is to estimate the impulse response (IR) of the recording channel and remove additional reverberant energy by inverting the IR.
- Assumptions:
 - Linear but not necessary time invariant system
 - Noise is stationary and uncorrelated
 - Sources have same directionality
 - Ergodic

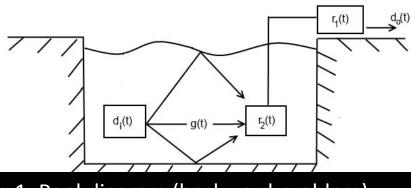


Fig.1: Pool diagram (backward problem)

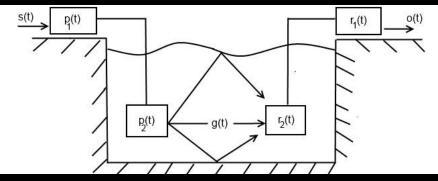


Fig.2: Pool diagram (forward problem)

Component	Time domain
Unknown SCUBA diver	d _i (t) / d _o (t)
Input / Output Signal	s(t) / o(t)
Playback elements	p ₁ (t), p ₂ (t)
Receiver elements	r ₁ (t), r ₂ (t)

Incoherent vs. coherent magnitude performance

- h(t) is the combined impulse response from the playback system to the ADC
- 2. Backward Problem: The diver can be found by convolving the recorded signal with the expectation of the inverse and with the 'playback' impulse responses

$$h(t) = r_1(t) * r_2(t) * g(t) * p_2(t) * p_1(t)$$
 (1)

$$d_i(t) = d_o(t) * E[h^{-1}(t)] * p_2(t) * p_1(t)$$
 (2)

3. Forward Problem: The PSD of a recorded control S₀ signal is adjusted incoherently by the ensemble average of the transfer function and smoothed with a zero-phase moving average filter M

4. For a "coherent" comparison, the PSD of control signal is adjusted by the optimum-inverse in the leastsquares sense $|\hat{F}|$ and by a constant (mean of equalized signal).

$$\begin{split} \mathbf{o}(t) &= \mathbf{h}(t) * \mathbf{s}(t) \\ \mathbf{10} \log_{10} \hat{\mathbf{S}}_{s} &= \mathbf{M} [\mathbf{10} \log_{10} \mathbf{S}_{o} - \mathbf{E} [\mathbf{20} \log_{10} |\mathbf{H}|]] \\ \mathbf{10} \log_{10} \hat{\mathbf{S}}_{s} &= \mathbf{M} [\mathbf{10} \log_{10} \mathbf{S}_{o} + \mathbf{E} [\mathbf{20} \log_{10} |\widehat{\mathbf{F}}|] - 2 \widehat{\mathbf{D}}] \end{split} \tag{3}$$

Coherent Inversion

5

 Coherent inversion is achieved in the least-squares sense using a processing delay

$$\hat{f} = \arg\min_{f} ||Af - z||_{2}^{2}$$
$$\hat{f} = [A^{T}A]^{-1}A^{T}z$$

- In practice, two parameters are varied to minimize the error:
 - Length of the IR
 - Delay of the spike

$$\sigma_t = D(l)$$

$$\sigma_f = \left[\frac{1}{\bar{I}}\sum_{k=0}^{I-1} (10\log_{10}|\hat{D}(k)| - \bar{D})^2\right]^{-1/2}$$

$$\bar{D} = \frac{1}{\bar{I}}\sum_{k=0}^{I-1} 10\log_{10}|\hat{D}(k)|$$

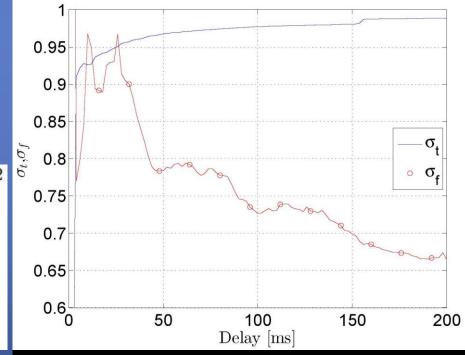


Fig.3: Inversion performance vs. delay l

"Forward" Experiment

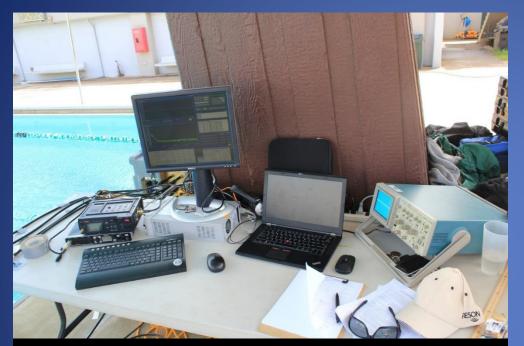


Fig.4: Reverberation experiment: Playback and recording equipment

- Pool dimensions: 22.9 x 22.9 x 5.2 m
- 4 spherical array hydrophones (at 1m)
 - Only use one channel but can be extended
- 5 random hydrophones

Fig.5: Spherical array

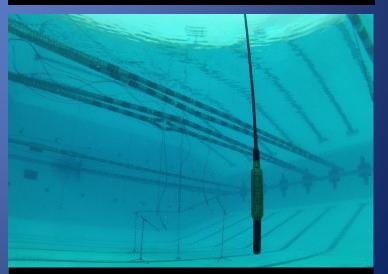
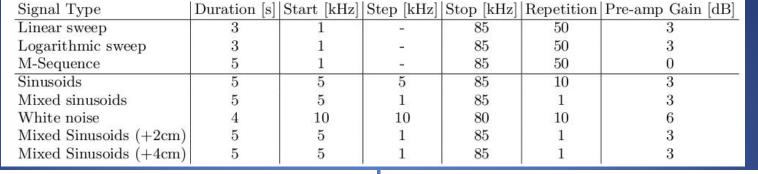
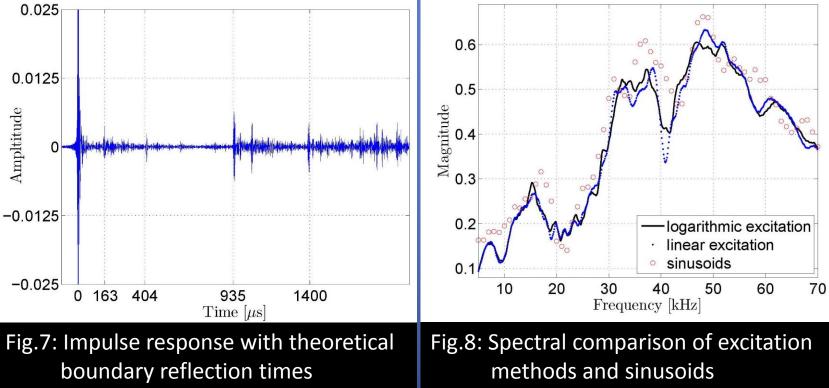


Fig.6: Random hydrophone

Recorded signals and IR estimation

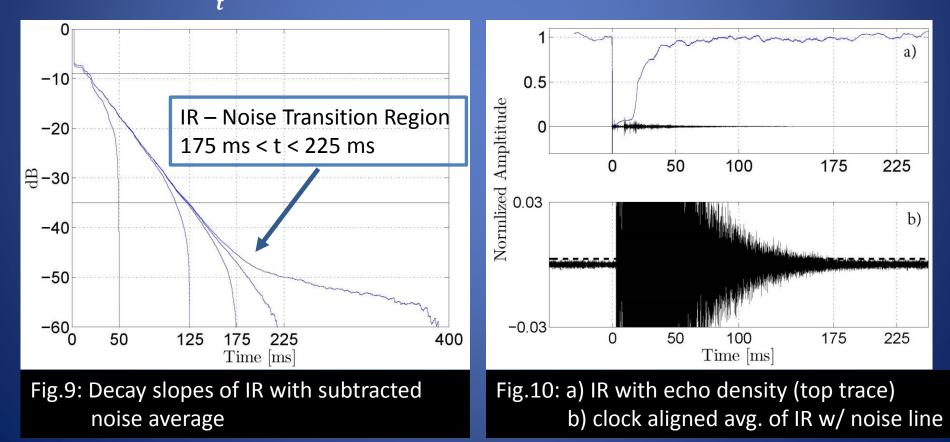




Estimation of IR length

8

• Modified Schroeder's method of backward integration $< g^2(t) > = \int_{t}^{\infty} \left[(k(\tau) + \eta(\tau))^2 - \overline{\eta^2} \right] d\tau$



Coherent vs. Incoherent Dereverberation Comparison

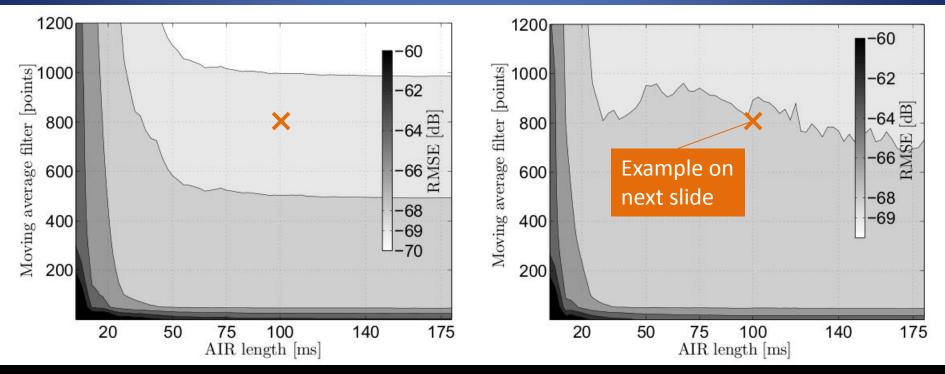


Fig.11: RMSE of dereverberated linear sweep: Incoherent (left) and coherent (right) inverse using 10 realizations. RMSE ticks correspond to contour surfaces

$$RMSE = 10 \log_{10} \sqrt{\frac{1}{N} \sum_{k=1}^{N} ||\widehat{S}_k - S_k||^2}$$

RSME is computed for PSD coefficients over 10-70 kHz band (1 Hz resolution)

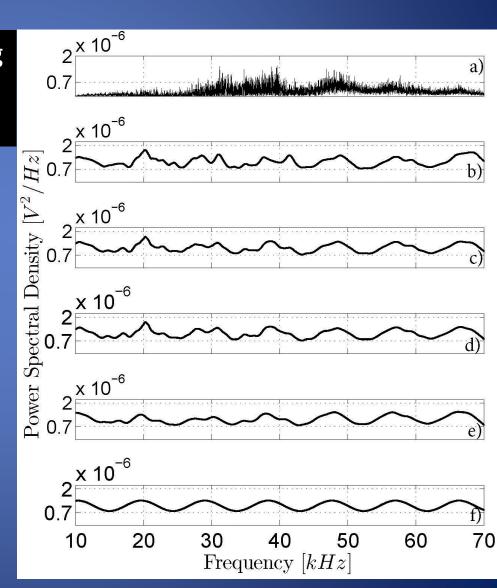
UNIVERSITY

of HAWAI'I Mānoa

Dereverberation Example

Fig.12: Dereverberation example using an IR length of 100 ms and a moving average filter length of 800 points

- a) Recorded linear sweep (1 realization)
- b) Incoherent adjustment with 1 TF
- c) Incoherent adjustment with 10 TF
- d) Incoherent adjustment with 48 TF
- e) Coherent adjustment with 10 TF
- f) Original linear sweep
- Optimal frequency range of transmitting transducer > 35 kHz



11

Dereverberation Procedure

1. Calculate theoretical reverberation time over 60 dB (T_{60}) of pool (no a priori recordings required)

$$T_{60} = 0.0368 \frac{V}{-S \log(1 - \sum_{i=1}^{6} \frac{\alpha_i A_i}{S})}$$

- 2. Design exponential sweep (approx. 5-10 times longer) and properly scaled inverse
- 3. Record 100 realizations (10 min) in the same channel (length of 1m) as the unknown source

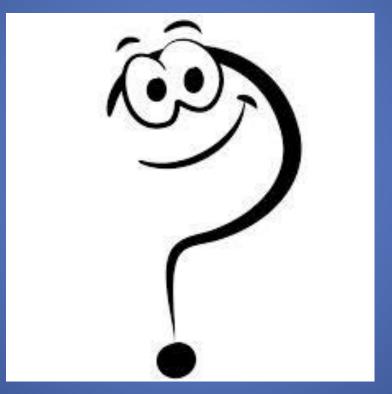
Dereverberation Procedure

12

- Deconvolve IR and estimate its length using Schroeder's method and/or echo density. Window IR accordingly.
- 5. Compute incoherent average of the transfer function and adjust PSD of unknown source to obtain SSL: $\pm \sigma [dB re 1\mu Pa^2/_{Hz} at 1m]$

$$\pm \sigma \approx 39.8r(1 - \sum_{i=1}^{6} \frac{\alpha_i}{6})^{\frac{1}{2}} (\sum_{i=1}^{6} \alpha_i A_i)^{-\frac{1}{2}} dB$$

Questions?



13

Example: Scaling of Excitation Sweep

- Log Sweep Properties:
 - Frequency [1 to 85 kHz]
 - Length: 3 seconds
 - **FS: 264600.18**
 - Amplitude: 0.4
- The procedure is simplified for the linear sweep (scaling only)

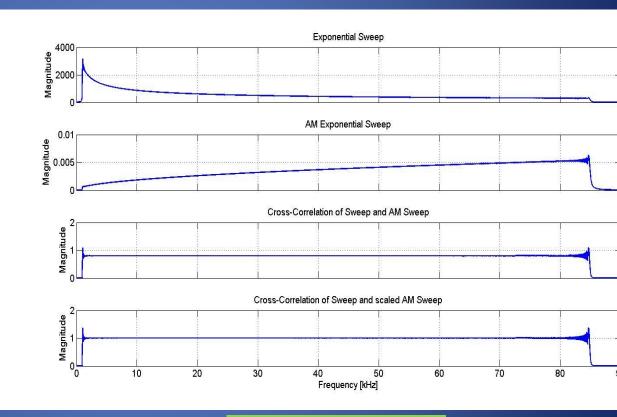


Fig.: scaled autocorrelation

Estimate g(t)

- Goal is to separate g(t) from
 the transducer transfer
 functions (assumed unknown in
 phase and amplitude)
- 1. convolve a synthetic AIR (1)
 w/ an unknown TF, resembling
 the IR of the electrical
 equipment (2)
- 2. Apply a cascaded scaling process to equalize frequency dependent gain and recover an estimate of the AIR (3)
- 3. Calculate error (4)

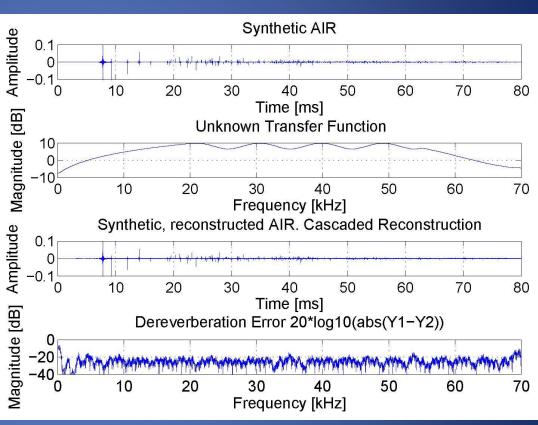
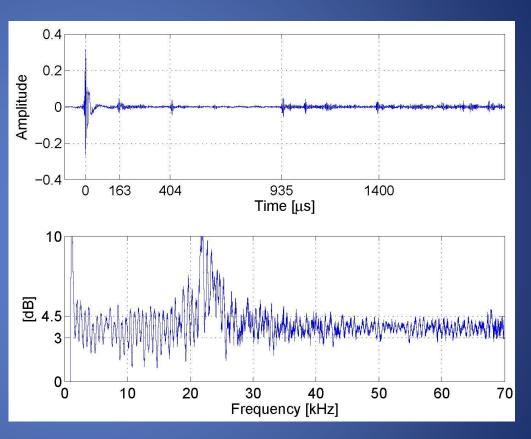


Fig.: Scaling process and error

g(t) estimate

- Time domain reflection correlate well
- |G| is smoothed on the decibel scale (251 points)
- What happens at 23 kHz?



17

Inversion using Least-Squares (LS)

- Provide only approximate equalization by minimizing the squared error
 - Only partially equalize spectral nulls which reduces narrowband noise amplification
 - Less sensitive to noise and inexact IR estimates
- LS inverse filters are very long and non-causal
 - Equalization results improve significantly when using a delay (processing delay)
 - Length of filter depends on reverberation time, sampling rate, delay (> 20k coefficients)
 - IR is non-minimum phase for reflection coefficients > 0.4 (reflection coefficient for water/air boundary > 0.4)
- The single channel least-squares formalism is extendable to a multichannel equalization method. The non-minimum phase problem is eliminated and if there are no common zeros, exact equalization can be achieved. (MINT = Mutiple-input/output INverse Theorem).

The Spike Filter

18

Equalize a channel with the inverse filter f of delay m	$h(t) * f_m(t) = \delta(t - m)$	<i>Ĵ</i>
Impulse response	$h = [h_0 \ h_1 \ h_2 \cdots h_{n-1}]^T$	Ĵ
Inverse filter	$f = [f_0 f_1 f_2 \cdots f_{n-1}]^T$	
Spike filter [n+m-1]	$z = [0 \ 0 \cdots 1]^T$	
Best approximation	$\hat{f} = [\hat{f}_0 \ \hat{f}_1 \ \hat{f}_2 \cdots \hat{f}_{n-1}]^T$	

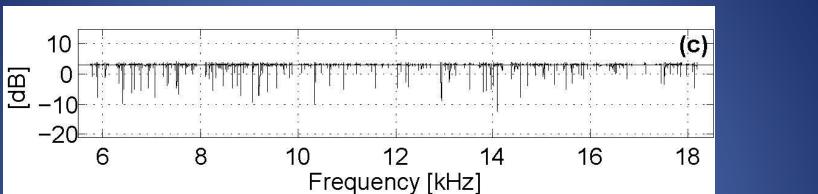
$$\hat{f} = \arg\min_{f} ||Hf - z||_2^2$$

 $\hat{f} = [H^T H]^{-1} H^T z$

- In practice, two parameters are varied to minimize the error:
 - Length of the impulse response [n]
 - Delay of the spike [m]
- Dimensions of H are (n+m-1) x (n)
 - Circulant Toepliz structure (inverse is positive definite and symmetric)

$$\mathsf{H} = \begin{bmatrix} h_1 & 0 & \cdots & 0 \\ h_2 & h_1 & \cdots & 0 \\ \vdots & h_2 & \ddots & \vdots \\ h_{n-1} & \vdots & \ddots & 0 \\ 0 & h_{n-1} & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & h_{n-2} \\ 0 & 0 & 0 & h_{n-1} \end{bmatrix}$$

Inversion Performance



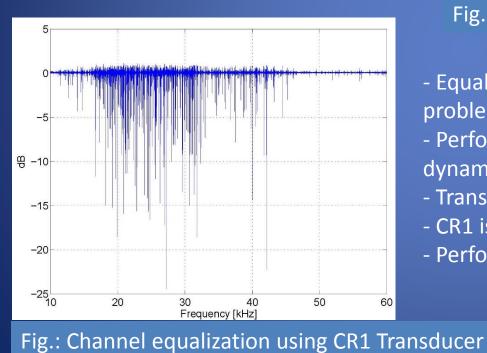


Fig.: Channel equalization using Lubell Speaker

- Equalization of spectral zeros seems to be a problem
- Performance might improve by minimizing the dynamic range of the IR
- Transmitting transducer has largest range
- CR1 is 'optimum' for 35-60kHz band
- Perform inversion over sub-bands?

UNIVERSITY

of HAWAI'I Mānoa