

Fusing data from near-shore and long-range sensors in a multi-layered network

Kai Gemba Department of Ocean and Resources Engineering University of Hawai'i at Mānoa

Danielle Holden, Hasan Shahid, Fatima Diop, Hector Pacheco, Brandon Gorton

Daniel Reynolds, Samuel Otu-Amoah, Tyler Hee Wai, Enrique Questell

The National Center for Secure & Resilient Maritime Commerce

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002.

SRI Objective and Architecture

2011 DHS, COE, **CSR Summer Research Institute**

To study and address the threat of pirated ships in the MTS being used as a dirty bomb

Transportation & Security

• Purchasing Power

-Trends and markets of the future

• Maritime Transportation System (MTS)

-Access to worldwide markets (85% of all goods)

-System of Systems (Bigger responsibility on the legs, i.e. loading, railroad, etc)

• Security & Resilience

-Protected by cost guard, military, etc

-Security vs. Operation (i.e. Containers)

Presentation Outline

- Technology Overview
 - -Near Shore Systems:
 - •Acoustics and Electro-Optics
 - -Long Range Systems
 - •Satellites, AIS, HF Radar
- Data Collection & Layered Architecture
- Tracking Examples
- Decision Support
- Acoustic integration for Hawai'i (Oahu)
 →My current research & plans

Stevens' Research Vessel, RV Savitsky on Hudson River

Acoustic Data Collection & Processing

DEMON Analysis

- Detection of Envelope Modulation on Noise
- Allows for classification by demodulating vessel specific noise
- Demonogram (top) shows how the spectral density of a vessel characteristic signal varies with time
- Demon Spectrum (bottom) shows the time averaged (60 s) representation of a vessels signal in the frequency domain

Demonogram and DEMON Spectrum

Infrared vs. High-resolution video

Video taken on July 4, 2011 from Maritime Security Laboratory

Infrared Image

-Thermal image does not change -Vessels can be tracked independently of light source

Optical Image

- -Vessels are hard to track as natural light decreases (use their self lightening)
- Vessels are impossible to track w/o own'light

Satellites - Introduction

TerraSAR-X-Satellite (EADS-Astrium)

Early detection -Low to high resolutions -Monitor environmental conditions -Limited availability -Required trained personnel to operate -High operational cost -Processing time depends on orbit, postprocessing, and image download time

SAR image of NJ, Manhattan and Brooklyn

Types of Satellite Imaging

Optical

- •Uses visible and infrared light
- •Passive detection
- •No image distortion

Synthetic Aperture Radar (SAR)

- •Uses radio waves
- •Active detection
- •Higher resolution images, covering larger areas
- •Flight path simulates large antenna (phase corrected signal summation)
- •Images are distorted
- •Can look through clouds
- •Study Internal waves
- •Thermal expansion of buildings

Satellite image comparison: Optical vs. SAR

EROS-B at 18:57:00 GMT on 7/11/2011

- Clouds covering bridge
- Wakes of vessels barely visible

COSMO-SkyMed at 22:49:02 GMT on 7/11/2011

- No clouds
- Wakes of vessels visible 10
- Buildings leaning to right

Automatic Identification System (AIS)

AIS Vessel Display, Hudson River

Rutgers AIS, Port of NY Entrance

Vessel Identification

-Tracks time and location of vessels -Provides name, type of vessel, MMSI #, country of origin -Class A and Class B -Stevens, Rutgers, and Coast Guard receivers -Compatible with Google Earth -Only effective when AIS transmitter is turned on in vessels 11

Ship Identification-AIS

- Comparison of SAR Satellite image and AIS Google overlay
- SAR image taken by TerraSAR-X on 10:56:19 GMT on 7/12/2011
- Vessel's Details
 - -Speed recorded (Max): 10.2 knots
 - -Call Sign: WDD5445

Source: marinetraffic.com

HF Radar - Introduction

Vessel Detection

- -Detection range: 0 to 70 km
- -3 to 30 MHz or 100 10 m wavelength
- -Detects vessels trajectory, distance and velocity
- -Cannot characterize type of vessel
- -Effective in fog and rain
- -Requires surface disturbance

HF Radar - Introduction

Cross Spectral Image

- Three plots show 2 directional loops and monopole
- Doppler spectrum determines vessels direction and speed
- Bragg Waves: 🛠 A measure of radar signals scattered by waves

Range Cell Image

- 95 range cells with each range cell being ~3 km long
- Three colors represent three loops, or antennae on the radar

Data Collection Process

22:49:02 GMT on 7/12/2011 Pacific Huron

- Example of acoustic layered architecture
- AIS ID: 305535000
 - Ship Type: Cargo
 - Length x Breadth: 190 m X 25 m
 - Flag: Antigua Barbuda [AG]

Sensor Type	Time (GMT)	Distance* (m)
Acoustic detection	22:41	2023
Video detection	22:46	872
Satellite	22:49	646
Video loses contact	22:52	944
Acoustic loses contact	22:55	1475

135 Tracking Redundancy: Pacific Huron

Carnival Miracle: Cruise Ship Detection : 1200 m, Loss: 1200 m

Thomas D. Witte: Tug Boat Detection: 550 m, Loss 1000 m

Detection Distances

- Acoustic detection depends on several factors
 - background noise (bridges, rain)
 - interferences from other targets (coherent noise)
- Maximum detection distance for SPADES bounded by two ferry terminals (2.5 km N, 750 m S)

Small Pleasure Craft Detection: 450 m, Loss 800 m

Robert Fulton: NY Ferry Max Detection Distance: 2500 m

Acoustic Classification

Vessel type	Fundamental Frequency range [Hz]	1st Harmonic [Hz]	2nd Harmonic [Hz]	3rd Harmonic [Hz]	Other frequency [Hz]
Tanker	4-6	8-12	n/a	n/a	n/a
Tugboat	14-20	28-40	n/a	n/a	n/a
Pleasure boat	88-97	n/a	n/a	n/a	154-172
34 foot Zurn	81	n/a	n/a	n/a	141,222
Jet Ski	26	53	79	105	n/a

Near Shore Technologies

- Conclusions
 - Acoustics is a reliable system in tracking vessels of interest (real time!) in the absence of dominant noise (i.e. other vessels or rain)
 - Successful in detection, tracking and classification but more complicated (changing environment)
 - Additional technologies (underwater optics, gliders, floats..)
 - Electro Optics can be used as detection and validation tool (requires operator)
 - IR limitations have to be considered (reflectivity & emissivity)

Long Range Tracking: HF Radar

11:10:00 GMT on 7/19/2011

Long Range Tracking: AIS and Satellite (SAR)

AIS data overlaid onto Google Earth, 10:13:45 GMT on 7/19/2011

Joan Moran (MMSI # 368669000)

Satellite image taken by COSMO-SkyMed, 10:13:06 GMT on 7/19/2011

Miss Gill (MMSI# 367122680)

Long Range Tracking: Complimenting HF Radar with AIS

AIS data overlaid onto Google Earth, 18:26:59 GMT on 7/26/2011

Long Range Technologies

• Conclusions

- Best used in a layered approach
- Successful in detection, not identification
- Good for port security because:
 - Satellite gives a large overview of the area
 - Good tools to display post effects (i.e. oil spill)
 - HF Radar can see over the horizon
- HF Radar
 - Best used for surface currents (Search and Rescue)
 - Hard to clearly detect vessels
 - Individual stations can be synched to a network

Multisource Data Interpretation:

How do you get from this...

Characteristic Frequency

Blurry Camera

HF Radar Screen

HF Radar, Speed and Range

Vessel Specifics

Process Breakdown:

MAGELLO GUI

http://www.stevens.edu/csrmagello/

Acoustic Network in Hawaii

- Real time data collection and processing

 Simplicity & robustness
- Export processed data to a GUI (.kml)
 - Simple and intuitive display for layering technologies
- Interaction with other technologies:
 - Record position and signature → provide acoustically relevant information about a source
 - complete time history

Next Steps

- Design and conduct an acoustic experiment on the south shore of Oahu this Fall
 - 10+ hydrophones, arranged in 2-3 clusters with both TDOA and Beamforming capability
 - Record Diver Signatures
 - Diver detection (breathing rate & frequency band)
 - Extraction of equipment specific frequencies
 - Vessel of opportunity / Diver tracking
 - Optimize with custom weights / UKF

Thank you for your time!

Are there any questions?

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Monitoring Early Vessel Traffic

Long Range detection and tracking within major shipping lanes might be accomplished with 4 hydrophones

DEMON Spectra Classification

Circle Line Cruise Ship

Vessel type	Fundamental Frequency range	1st Harmo nic	2nd Harmon ic	3rd Harmo nic	4th Harmo nic	Other frequen cy
Small cruise	5-6	10-12	15-18	n/a	n/a	n/a
Ferry	10-12	n/a	n/a	30-36	40-48	n/a
Tanker	4-6	8-12	n/a	n/a	n/a	n/a
Tugboat	14-20	28-40 n/a		n/a	n/a	n/a
Savitsky	47-54	95-109	95-109 143-163		n/a	n/a
Small pleasure boat	88-97	n/a	n/a	n/a	n/a	154-172
34 foot Zurn	81	n/a	n/a	n/a	n/a	141
Jet Ski	26	53	79	105	n/a	n/a

33

Stability of Demonogram

Abraham Lincoln Ferry 7/11 19:04

Savitsky 7/11 11:51

Douglas B Guarin Ferry 6/30 20:34

Savitsky 7/11 11:59

Engine Speed Effects on DEMON Signature

Unknown Boat 6/30 18:57. Peaks change by a factor of .72

Unknown Boat 6/30 18:42. Peaks change by a factor of 1.08

- DEMON analysis gives us a signal which is dominated by the engine and propellers
- As the engine speed changes, the DEMON spectra will as well
- Signatures show that the vessel dependent frequencies change proportionally when the engine speed changes

Appendix 1: Acoustic Classification

	Fundamental Frequency	1st Harmo	2nd Harmon	3rd Harmo	4th Harmo	Other frequen	
Vessel type	range	nic	ic	nic	nic	cy .	
Small cruise	5-6	10-12	n/a	n/a	n/a		
Ferry	10-12	n/a	30-36	40-48	n/a		
Tanker	4-6	8-12	n/a	n/a	n/a	n/a	
Tugboat	14-20	28-40	n/a	n/a	n/a	n/a	
Savitsky	47-54	95-109	143-163	n/a	n/a	n/a	
Small pleasure boat	88-97	n/a	n/a	n/a	n/a	154-172	
34 foot Zurn	81	n/a	n/a	n/a	n/a	141	
Jet Ski	26	53	79	105	n/a	n/a	

Vessel type	Fundamental Frequency range [hz]	1st Harmo nic	2nd Harmon ic	3rd Harmo nic	4th Harmo nic	Other frequen cy
Small cruise	5-6	10-12	15-18	n/a	n/a	n/a
Ferry	10-12	n/a	n/a	30-36	40-48	n/a
Tanker	4-6	8-12	n/a	n/a	n/a	n/a
Tugboat	14-20	28-40	n/a	n/a	n/a	n/a
Savitsky	47-54	95-109	143-163	n/a	n/a	n/a
Small pleasure boat	88-97	n/a	n/a	n/a	n/a	154-172
34 foot Zurn	81	n/a	n/a	n/a	n/a	141
Jet Ski	26	53	79	105	n/a	n/a

Appendix 2: Stability of Savitsky Signal

Covitalus 4	Deek	40.0.1.	00.4.1.	4 40 0 1 1-
Savitsky	Реак	49.8 HZ	99.1 HZ	148.9 HZ
	Relative Intensity	1	0.342	0.151
Savitsky 2	Peak	54.7 Hz	109.4 Hz	163.1 Hz
	Relative Intensity	1	0.406	0.16
Savitsky 3	Peak	47.9 Hz	95.2 Hz	143.1 Hz
	Relative Intensity	1	0.418	0.207
Savitsky 4	Peak	50.3 Hz	100.6 Hz	150.9 Hz
	Relative Intensity	1	0.366	0.204
Savitsky 5	Peak	49.8 Hz	100.1 Hz	149.9 Hz
	Relative Intensity	1	0.433	0.218

Appendix 3: Engine Speed Effects

						Initial peak	83.5	146.5
					5	Final peak	89	156
		1st Frequency (Hz)	2nd Frequency (Hz)	3rd Frequency (Hz)		Ratio (Final/Initial)	0.94	0.94
	Initial peak	25	100	175				
1	Final peak	18	78	137		Initial peak	78.5	138
	Ratio (Final/Initial)	0.76	0.78	0.78	6	Final peak	97	171.5
L						Ratio (Final/Initial)	0.81	0.8
	Initial peak	66	200	400				
2	Final peak	56.5	170	340		Initial peak	98	172
	Ratio (Final/Initial)	0.86	0.85	0.85	7	Final peak	82.5	144.5
						Ratio (Final/Initial)	0.84	0.84
	Initial peak	65	87	152				
3	Final peak	70	94	165		Initial peak	92	161
	Ratio (Final/Initial)	0.93	0.93	0.92	8	Final peak	81.5	143
L						Ratio (Final/Initial)	0.89	0.89
	Initial peak	97	169					
4	Final peak	70	123			Initial peak	79.5	139
	Ratio (Final/Initial)	0.72	0.73		9	Final peak	88	154
L	· · ·	I	ļ	<u> </u>		Ratio (Final/Initial)	0.9	0.9

Introducing Digital Image Processing

- Set of computational techniques for analyzing, enhancing, compressing and reconstructing images
- Applications:
 - Image Subtraction: pixel by pixel intensity subtraction between two images to form a better contrast image with the potential target
 - Image Overlay: Alignment of overlapping HR and IR images to construct one seamless composite image with more detail
 - Noise and glare reduction
 - Edge and corner detection

Example Image Overlay

Original HR Image

Original IR image

Overlaying Image

Image Processing for Detecting Multiple Targets

Image Subtraction

Goal: contrast enhancement (for edge detection)

Image of interest (1) is subtracted from a time averaged reference image Resulting image (2) is the contrast enhanced image

- \rightarrow eases operator decision
- \rightarrow further processing

Image Processing

Conclusions

- Image subtraction was established as a viable surveillance technology
- You can detect things better & nice for further processing
- Suggests automation
- Recommendations
 - Create a database of background images sorted by significant changes in the environment
 - Fully automate the algorithm so it continually analyzes IR images
 - Make the algorithm do successful image vessel classification
 - Create a fully-functional GUI that could be integrated into a surveillance system such as BOOM

IR Imaging Overview

- All objects radiate thermal energy
 - -As the temperature increases, the amount of thermal energy increases while the <u>peak wavelength</u> of the radiated energy decreases
- IR cameras detect radiated energy, NOT Temperature
 - Heat energy is emitted by the object so no light or heat source is needed
 - Emissivity is a characteristic of the material. Two objects at the <u>same</u>
 <u>temperature</u> can emit a <u>different amount</u>
 <u>of energy</u> and thus appear different on an IR image

Three aluminum cans with partially oxidized surfaces and a strip of black electrical tape. The can on the left is hot, middle can is ambient and right can is cold.

Aluminum emissivity of 0.1, Electrical tape emissivity of 0.95.

IR represents the wavelengths slightly longer than visible

Satellite Flyovers

Date	Time (GMT)	Satellite	Туре
7/11/2011	10:23:24	COSMO-SkyMed	SAR
	11:01:30	COSMO-SkyMed	SAR
	11:13:25	TerraSAR-X	SAR
	18:57:00	EROS-B	Optical
	22:49:02	COSMO-SkyMed	SAR
7/12/2011	10:56:19	TerraSAR-X	SAR
	11:01:28	COSMO-SkyMed	SAR
	18:40:00	EROS-B	Optical
	22:49:00	COSMO-SkyMed	SAR
	23:04:06	COSMO-SkyMed	SAR

SAR: Image Distortion

- Beam reaches top of target before it reaches its bottom
- Image appears compressed

Ship Identification-Wakes

Types of Satellite Imaging

- Optical
 - Passive
 - Uses visible and Infra-Red

- Synthetic Aperture Radar (SAR)
 - Active
 - Flight path simulates large

Simulation Results - GPS Tracking route

- Pin ups represent Savitzky's positions at time of Satellite images
- Routes also confirmed with SPADES and Video

Savitsky confirmed with satellite image

Savitsky not confirmed on satellite image

Savitsky's explosion site (confirmed)

22:49:02 GMT on 7/11/2011 - RV Savitsky

Acoustic detection distance: 550 m at 22:48:00 GMT Acoustics loses contact: 460 m at 22:50:50 GMT due to ferry noise from the north

Long Range Flow Chart

Threat ID: Check For Normal Behavior

Tracking/Detection Parameters	🔲 Are	eas of Oper	ations 🛛 🛄 🛛 CAM I	Info 🔡	Classification										
Classification 👻	PAX -	LOA 👻	Gross Tons (ton	is) 👻 T	op Speed (Kts)	Draft (Ft)) 👻 Beam (Ft) -	Hight 🚽	- MR (1-	10) -	Payload (Tons)	- AIS R	Required? (Y/N) 🕞	Model Ship 👻
PWC	3	10		0.25			0.5	4					1		
Small Rec		50		6	5	0	2	6							
Small F/V		50		8	2	5	5	10	2	0		6	000		Holland 32
Small Sail		40		8			8	10							
Small P/V	40	100		18	3	0	4	15					30		P/V Atlantic Seal
Dilot		80		30	3	0	4	17							50' Viking Convertible
Medium P/V	100	150		95	1	8	9	36					50		P/V Staten Island
Tug(unhitched)	100	180		194	1	0	20	40	7	0			50	V	M/V Delta Billie
Medium F/V		100		200	1	0	8	28					153		F/V Time Bandit
Large Rec	П	acking/D	etection Paramet	tare	Areas of One	ations			Classifi	cation					
Large Sail		acking/D	election rataliet		Areas of ope				Classific	Lation					
Tug& Tow	\angle	Classif	fication 👻	Areas	of exclusion 👻	Out of o	channel op	perati	ons? 👻	Errad	ic Ope	rations Expe	ted? 👻	Expected are	as of Operations 👻
Cruise Ship	÷	Contain	er Large												
Large P/V	+ (Contain	er Medium											Upper Bay, Re	ed Hook or Port E.
Large F/V	E I	Contain	or Small												
Small Cargo (handymax)															
Medium Cargo (panamax)	± (Cruise S	hip												
Super Cruise	+	Large F/	V												
Large Tanker (aframax)	÷.	Large P/	v												
Large Cargo (Suezmax)	÷	Large Re	ec.		V		V								
	÷	Large Sa	il		V		V					V			
	÷	Medium	n F/V												
	+	Medium	n P/V		V										
	+	Medium	Rec		v		\checkmark					V			
	+	Pilot													
	÷	PWC													
	÷.	Small F/	V												
	÷.	Small P/	٧V		\checkmark		\checkmark					V			
	÷ :	Small Re	2C		V		\checkmark					\checkmark			
	÷.	Small Sa	il		\checkmark		\checkmark					V			
	÷ :	Super Cr	ruise												
	+	Tanker L	arge												53
	÷ -	Tanker S	Small												00
	+	Tug& To	w												
	+	Tug(unh	itched)												

Bay and Oceanographic Observation Management System (BOOM)

Integration of sensor displays

User Information Tools

How do you get from this...

Demon Spectrum

Blurry Camera Image

HF Radar Screen

HF Radar – Speed and Range

Bay and Oceanographic Observation Management System (BOOM)

Integration of sensor displays

Acoustic Data Collection and Processing Stevens Passive Acoustic Detection System (SPADES)

SRI Objective and Architecture

2011 DHS, COE,
CSR Summer
Research InstituteTo study and address the threat of pirated ships in the
MTS being used as a weapon of terrorSensor andDefine the strengths and limitations of se

Technology

Applications in Port

Security

Consequence

Assessment

Define the strengths and limitations of sensor technologies to detect, classify, and track vessels in, near, and approaching the urban port environment

Long Range Technologies Satellites, HF Radar, AIS

Near Shore
TechnologiesAcoustics, Electro-optics

Decision Support Methodology

Vessel categorization, threat assessment

BOOM!: Interactive **B**ay and **O**ceanographic **O**bservation **M**anagement System

📴 Google Earth_01.vi

Bay and Oceanographic Observation Management System(BOOM)

