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I. INTRODUCTION

Uncertainty relations are one of the pillars of quantum
physics. They are directly related to the basic commutator
relations and to quantum equations of motion. In ordinary
quantum mechanics the basic commutator between the posi-
tion and momentum operators in one dimension is given by
(we use units such that ~ = 1),

[x, p] = i . (1)

In this paper we shall consider the quantum mechanics where
Eq. (1) is modified or, in modern language, deformed. Mod-
ified uncertainty relations appear in many different areas of
physics, sometimes directly and sometimes in disguise. For
example, in a system such as a complex molecule, there are
length scales below which the physics is complicated and
some effective description is sufficient. It is possible to cap-
ture some of the effective physics by a modification of the
uncertainty relations. Rotational and vibrational states of
molecules and deformed nuclei can be described using models
with deformed basic commutators. Similar applications also
appear in the physics of deformed heavy nuclei. Another area
where modified basic commutators play some role is quantum
optics. Various entangled and squeezed coherent states are
modeled successfully using this approach. Even more, such
states can be experimentally realized. Entangled states are
also of importance in quantum computing. From our perspec-
tive it is most exciting that quantum theory of gravity requires
that basic commutators of the quantum mechanics be altered.
This seems to be the case in both, the loop quantum gravity
and in the string theory. Very energetic test particles for prob-
ing very small scales on the order of the Planck length disturb
gravitationally the very space-time they are probing. The ef-
fect is captured as a modification of the position-momentum
uncertainty relation. Modified uncertainty relations require
modified basic commutators and imply the existence of mini-
mal length and minimal momentum. There are also examples
of modified special relativity theory with invariant minimal
length or minimal momentum, or both.

Uncertainty relations have a profound consequence on
physics. For example, position-momentum uncertainty rela-
tions in the ordinary quantum mechanics,

∆x∆p ≥ 1
2

(2)

reflect directly the basic commutator relation, Eq. (1). In the
ordinary quantum mechanics it is possible to construct states
with zero uncertainty in position or momentum (of course,
not simultaneously). In other words, the space-time is a sharp
continuum. Within the framework of the ordinary quantum
mechanics the usual uncertainty relations imply that it should
be possible to measure, at least in principle, the position and
the momentum with absolute certainty, of course not at the
same time! On the other hand if the theory is endowed, for
example, with minimal length by modifying uncertainty rela-
tions, then the position is no longer a viable observable and is
called fuzzy. We loose the Schrödinger equation as a differ-
ential or integral equation in spatial coordinates. Coordinate
representation of ordinary quantum mechanics becomes some
kind of effective description valid at sufficiently large scale.
There is a profound effect on the spectrum of states and on
the scattering properties of systems in the modified quantum
theory. If the theory is endowed with both, minimal length
and minimal momentum we loose both, coordinate and the
momentum representations, so we are left with representation-
free operator methods. Both spectral and scattering properties
of systems deviate greatly from that described by the ordi-
nary quantum mechanics. Perhaps some experiments can be
devised to look for and to measure such discrepancies an to
determine the size of deformation parameters.

The purpose of this paper is to study the energy eigenvalues
and eigenvectors of the one-dimensional and D-dimensional
isotropic harmonic oscillator model in the quantum mechan-
ics with minimal length uncertainty relations. In Ref. [1], the
energy eigenvalues of the one-dimensional harmonic oscilla-
tor with minimal length uncertainty relations were calculated
by solving the Schrödinger equation in momentum space. In
Ref. [2] it was shown, again by solving the Schrödinger equa-
tion in momentum space, that the wave-functions are given by
Gegenabuer polynomials [3]. In Ref. [4] ladder operators for
the model were constructed by using the knowledge of the ex-
act wave functions and energy eigenvalues and the recursion
relations of the Gegenbauer polynomials.

In this paper we present a complete solution of the one-
dimensional harmonic oscillator in quantum theory with min-
imal length uncertainties. We make no use of the knowledge
of exact energy eigenvalues and wave-functions. We show
that the Heisenberg-Weyl algebra of the model is a deformed
SU(1, 1) algebra. We arrive at this algebra by showing that
the model is equivalent to a symmetric Pöschl-Teller model.
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Operators that realize this deformed SU(1, 1) serve as the lad-
der operators for the harmonic oscillator model in the minimal
length quantum theory. We can repeat the construction for
the isotropic oscillator in D-dimensions. It is worth mention-
ing that the D-dimensional quantum mechanics with minimal
length also features non-commuting coordinates.

The paper is organized as follows. In Section II, following
[1], we give a brief overview of the modified uncertainty rela-
tions with minimal length. We also define the harmonic oscil-
lator model in this framework. We show that a straightforward
factorization method, well familiar from quantum mechanics
textbooks, does not work because the Heisenberg-Weyl alge-
bra of the model is not closed (it requires an infinite num-
ber of operators for closure). In Section III we are inspired
by the transformation found in Ref. [1] that maps the parti-
cle momentum into the particle wave-vector and demonstrates
explicitly that plane waves have minimal wavelength. Using
this transformation we calculate the Green’s operator of the
harmonic oscillator in the minimal length quantum mechanics
and find that it exactly equals to the Green’s operator of the
Pöschl-Teller model. This demonstrates that two systems are
equivalent. Next, as explained in Ref. [5], we transform the
Pöschl-Teller model into its natural coordinates. Described
in natural coordinates, the particle moving in the symmetric
Pöschl-Teller potential appears as if it is exhibiting harmonic
oscillation of the ordinary theory but with energy dependent
frequency. It is essential that natural coordinates are such that
the Heisenberg-Weyl algebra is closed. In Section IV we con-
struct a pair of mutually adjoint ladder operators for the sym-
metric Pöschl-Teller model in its natural coordinates. We use
no knowledge of the exact solution of the model. The ladder
operators for the Pöschl-Teller model were constructed pre-
viously in Ref. [6] but the knowledge of the exact solution
of the Schrödinger equation was an essential part of the con-
struction. Construction of operators presented in Refs. [6] and
[4] are essentially identical. The ladder operators of the sym-
metric Pöschl-Teller model satisfy a deformed version of the
Heisenberg-Weyl algebra that also happens to be some partic-
ular deformation of SU(1, 1) algebra. We use this deformed
algebra to calculate energy eigenstates and eigenvalues ex-
actly. The energy spectrum and wave-functions agree with
previous results. In Section V we discuss the physics behind
the construction of ladder operators. In particular we explain
where the prominent features such as minimal length of the
deformed quantum mechanics wind up in the framework of
the Pöschl-Teller model. In Section VI we compare our re-
sults with prior works. We show that the algebra of ladder
operators we constructed can be thought as a deformation of
a simple ordinary Bose oscillator algebra or as a deforma-
tion of some SU(1, 1), that itself is a deformation of an or-
dinary Bose oscillator algebra. We also point out that the dy-
namical symmetry group of the system is just the dynamical
SU(1, 1) algebra of the ordinary Bose oscillator constructed
from the quadratic combination of Bose oscillators. The rea-
son that the dynamical algebra is unchanged is related to the
fact that the deformations do not mix states of different par-
ity. In Section VII we consider the D-dimensional isotropic
harmonic oscillator model [2]. We show that it can be ana-

lyzed the same way as the one-dimensional model and that the
D-dimensional isotropic harmonic oscillator model in a non-
commutative quantum mechanics with minimal length uncer-
tainty relations is in fact equivalent to a generalized Pöschl-
Teller model. The appearance of the Pöschl-Teller potential
is related to the quadratic form of the non-relativistic kinetic
energy operator. Finally, in Section VIII we summarize our
results, describe possible generalizations and consider some
future directions.

II. THE MINIMAL LENGTH UNCERTAINTY RELATIONS
IN ONE-DIMENSION AND THE HARMONIC OSCILLATOR

MODEL

As described in the introduction, there are number of rea-
sons to consider modified uncertainty relations in quantum
mechanics. Following [1], we consider a simple deforma-
tion of the basic commutator (1), that implies the existence
of minimal length uncertainty. Let x and p be the position
and momentum operators, respectively, and let us assume that
they obey the basic commutator

[x, p] = i
(
1 + βp2

)
. (3)

On dimensional grounds,
√
β is measured in units of length.

The ordinary quantum mechanics can be considered as a limit
of the deformed theory where β tends to zero. Formally, op-
erators x and p are hermitian but, as shown in [1], x is not
self-adjoint. The operator x cannot be diagonalized but it does
have real expectation values. It also has a one-parameter class
of self-adjoint extensions. To obtain information on the posi-
tion, the best thing we can do is to construct states such that
for these states the uncertainty of the operator x is minimal. A
symmetric operator with minimal uncertainty states and real
expectation values is called a fuzzy observable and the corre-
sponding minimal uncertainty states are some coherent states.

The modified commutator (3) implies a modification of the
uncertainty relations. They are given by

∆x∆x ≥ 1
2

∣∣〈 [x, p]
〉∣∣ , (4)

where angle bracket
〈 〉

denotes the expectation value. Un-
certainties are defined by the usual expressions. For an op-
erator O we have, 〈O〉 = 〈ψ|O|ψ〉 and (∆O)2 = 〈ψ|(O −
〈O〉)2|ψ〉 = 〈O2〉− 〈O〉2. With the modified basic commuta-
tors it follows

∆x∆p ≥ 1 + β∆p2 + β〈p〉2 . (5)

The uncertainty relation (5) is saturated when the two sides
are equal. The quadratic term present on the right hand side
implies that there exists a minimal uncertainty in the position.
The smallest possible uncertainty in the position occurs for
sates that have zero average momentum, 〈p〉 = 0. Then,

∆xmin =
√
β . (6)

We will explore the implications of the presence of absolutely
the smallest possible resolution of distance within the context
of a harmonic oscillator model.
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The harmonic oscillator is probably the most widely studied
and used example in all of physics, quantum and classical.
It is a feature-rich model, still simple enough that it can be
solved exactly by a variety of methods. The fact that it is
also a model of the 0 + 1 dimensional field theory makes it
even more attractive in the present context. It is defined by the
Hamiltonian

H =
1
2
p2 +

ω2

2
x2 . (7)

In the ordinary quantum mechanics, the spectrum and
states can be constructed, for example, by representing the
Heisenberg-Weyl algebra using a pair of operators, a and a†,
that satisfy the commutator relation [a, a†] = 1. This commu-
tator relation is equivalent to the basic commutator [x, p] = i.
Then, [H, a] = −ωa and [H, a†] = ωa†. The spectral ener-
gies are given by En = ω(n+ 1/2) where n = 0, 1, . . . , and
states are constructed as |n〉 ∝ (a†)n|0〉. The ground state is
defined by a|0〉 = 0. Furthermore, the states are classified by
the dynamical SU(1, 1) symmetry algebra constructed as fol-
lows. Let S+ = 1

2a
†2, S− = S†+ and S0 = 1

4 (aa†+a†a). Op-
erators S± and S0 satisfy the algebra, [S+, S−] = −2S0 and
[S0, S±] = ±S±. The Hamiltonian is given by H = 2ωS0.
The spectrum is characterized by a Bargman index k which
determines the quadratic Casimir operator C of the dynamical
SU(1, 1) algebra. We have C = S2

0 − 1
2 (S+S− + S−S+) =

k(k − 1). For the ordinary oscillator C = −3/16 and it
corresponds to k = 1/4 and k = 3/4. The space of states
of the oscillator forms a reducible representation of the dy-
namical symmetry group and splits into two subspaces each
forming an infinite-dimensional, irreducible representation of
SU(1, 1). Even parity oscillator sates correspond to Bargman
index k = 1/4 and odd parity oscillator states correspond to
Bargman index k = 3/4.

This construction and characterization of the oscillator
states is possible due to three facts:

1) The states |n〉 ∝ (a†)n|0〉 form a basis of the Hilbert
space on which the commutator [a, a†] is diagonal.

2) The Heisenberg-Weyl algebra of the oscillator, given
by commutators [H,x] = −ip and [H, p] = iω2x is
closed. Closure of the algebra means that multiple com-
mutators involving the Hamiltonian do not involve any
new operators in addition to x and p.

3) Operators x and p and operators a and a† are related by
a linear transformation.

A few comments are in order here. In the ordinary quantum
mechanics the basic commutator [x, p] = i is diagonal so it is
always possible to choose [a, a†] to be diagonal. This means
that 1) can be trivially satisfied. It is sufficient that opera-
tors a and a† in 1) be related to operators a and a† in 3) by
a SU(1, 1) transformation. The SU(1, 1) here is the dynam-
ical symmetry of the model and it is realized linearly. In the
case of the harmonic oscillator the commutator in 1) takes the
simplest possible form, because it is a unit operator. This is
achieved by using the simple factorization based on the trans-
formation x = 1√

2ω
(a+ a†), p = −i

√
ω
2 (a− a†).

We would like to arrive at the description of the oscillator
in the quantum theory with minimal uncertainty relations that
is parallel to that of the oscillator in ordinary quantum me-
chanics. As we show in this paper, this is possible, but highly
nontrivial.

The quantization of the system is essentially equivalent to
finding a basis set in the Hilbert space that simultaneously di-
agonalizes the commutator and the Hamiltonian. In the ordi-
nary quantum mechanics the basic commutator is diagonal in
any basis because it is proportional to a unit operator, Eq. (1).
Hence, any basis that diagonalizes the Hamiltonian will do. In
the deformed quantum mechanics this is no longer the case.

The deformation of the basic commutator has a profound
effect on the Heisenberg-Weyl algebra. Consider two com-
mutators, [H,x] = −ip− iβp3 and [H, p] = iω2x+ ω2βp+
iω2βxp2 + ω2β2p3, valid for the oscillator in the deformed
quantum mechanics. Clearly, this algebra is not a closed al-
gebra. In addition to operators x and p, new operators that
are quadratic and cubic in x and p appear. These higher pow-
ers of operators appear in the algebra precisely because of the
modification of the basic commutator in Eq. (3). Computing
additional commutators such as [H, [H,x]] and [H, [H, p]] we
find that higher an higher powers of basic operators enter. This
simply means that the Heisenberg-Weyl algebra of the model
is not closed. This makes the application of the operator fac-
torization method highly nontrivial.

III. EQUIVALENCE OF THE ONE-DIMENSIONAL
HARMONIC OSCILLATOR WITH MINIMAL LENGTH

UNCERTAINTY RELATION AND THE PÖSCHL-TELLER
MODEL

The modified basic commutator (3) implies that there is
minimal length below which it is not possible to resolve dis-
tances. The free particle states are still plane waves but they
exhibit minimal wavelength, λmin = 4

√
β. The dispersion

relation of the free particle of mass m found in Ref. [1] is
given by

Efree particle =
1

2mβ

(
tan

2π
√
β

λ

)2

. (8)

The transformation that maps the free particle energy eigen-
value E = 1

2mp
2 into the wave-vector representation is given

by

p =
1√
β

tan
√
βρ , (9)

where ρ = 2π/λ is the particle wave-vector.
It was also shown in Ref. [1] that the commutator relation

(3) can be realized in the momentum representation by taking
the position operator in the momentum representation as

x =
(
1 + βp2

)(
i
d

dp

)
+ iγp . (10)

The momentum operator p acts simply as multiplication, and
γ is some parameter that can be chosen freely [2]. Operators
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x and p are formally hermitian with respect to a measure

dµ(p) =
dp

(1 + βp2)1−γ/β
(11)

on the (−∞ ≤ p ≤ ∞) interval. In Refs. [1] and [2] the
representation given by Eq. (10) was used to formulate and
solve the Schrödinger equation for the problem,

Hψ(p) = Eψ(p) . (12)

They found that the states are labeled by a single quantum
number n = 0, 1, . . . , . The wave functions ψ(p) are essen-
tially given by Gegenbauer polynomials and E is a quadratic
function of n.

In momentum space representation the kinetic energy in the
Schrödinger equation appears as some kind of potential en-
ergy term. In fact, Eqs. (9) and (8) are very suggestive. The
kinetic energy term in the Schrödinger equation has an appear-
ance of the potential of the symmetric Pöschl-Teller model.
To exploit this relationship we calculate the Green’s function
G(z) of the oscillator and show that it equals exactly to the
Green’s function of the Pöschl-Teller model. This establishes
the the equivalence of the two models.

Let z be a complex number. The Green’s function is given
formally by

G(z) = (z −H)−1
. (13)

Let Ψ(p) and Φ(p) be two arbitrary state functions of the os-
cillator in the deformed quantum mechanics. We now calcu-
late the matrix element of G−1(z)

〈Φ|G−1(z)|Ψ〉

=
∫ ∞
−∞

dµ(p) Φ∗(p)
[
z − 1

2
(
p2 + ω2x2

)]
Ψ(p) .

(14)

Making first the variable change given by Eq. (9) and then
performing a similarity transformation that removes the pa-
rameter γ, Ψ = Jψ with J = (cos

√
βρ)γ/β , we obtain

〈Φ|G−1(z)|Ψ〉 =

π/2
√
β∫

−π/2
√
β

dρ φ∗(ρ) (z −H ′)ψ(ρ) , (15)

where

H ′
(
i
d

dρ
, ρ

)
=J−1H

(
i
d

dρ
, ρ

)
J =

− ω2

2
d2

dρ2
+

1
2β

tan2
√
βρ .

(16)

The Hamiltonian H ′ is the Hamiltonian of the symmetric
Pöschl-Teller model. We note that the deformed commutator
(3) becomes simply the commutator of the ordinary quantum
mechanics. [

i
d

dρ
, ρ

]
= i . (17)

We can bring Hamiltonian H ′ to a standard form of Pöschl-
Teller model by rescaling a variable and defining new con-
stants. Define √

βρ = αx , α2 = ω2β

1
β

=
ω2

α2
= α2ν(ν − 1)

(18)

and the measure becomes
π/2
√
β∫

−π/2
√
β

dρ = α√
β

π/2α∫
−π/2α

dx. We

also introduce p = −i ddx such that [x, p] = i – this is compat-
ible with Eq. (17). Then the Hamiltonian reads

H ′(p, x) =
1
2
p2 +

α2

2
ν(ν − 1)
cos2 αx

− 1
2β

= HSPT(x, p)− 1
2β

,

(19)

where HSPT is the Hamiltonian of the symmetric Pöschl-
Teller model in standard form.

The symmetric Pöschl-Teller model has been extensively
studied before. It is exactly solvable by a variety of methods.
In Ref. [6] it was shown that its Heisenberg-Weyl algebra is a
deformed SU(1, 1); see also [7].

In Ref. [5], it was shown that a very general potential that
supports bound states can always be reformulated in terms of
some so-called natural variables with the property that mo-
tion looks like the motion in the harmonic oscillator potential
with energy dependent frequency. In these natural coordinates
coherent states considered in [5] obey essentially a classical
equation of motion of the harmonic oscillator. These natu-
ral coordinates no longer satisfy canonical commutator rela-
tions of the ordinary quantum mechanics. However, the basic
commutator between the natural coordinate and the conjugate
momenta does not imply any limit on uncertainties because
its character is different from deformation given by Eq. (3).
The Heisenberg-Weyl algebra of the model expressed in nat-
ural coordinates is essentially the Heisenberg-Weyl algebra of
oscillator in ordinary quantum mechanics and it is closed.

The natural coordinates for the Pöschel-Teller model used
in [5] are defined as follows:

y = sinαx ,

k =
α

2
{cosαx, p} = α cosαx p+ i

α2

2
sinαx .

(20)

In natural coordinates the matrix elements of the operator
G−1(z) is given by

〈Φ|G−1(z)|Ψ〉

=
1√
β

1∫
−1

dµ(y) φ∗(y) [z′ −HSPT(k, y)]ψ(y) ,
(21)

where the new measure is dµ(y) = dy√
1−y2

. We have also

made a shift of the energy variable, z′ = z + 1
2β . In natural
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variables the Hamiltonian reads

HSPT(k, y) =
1

2α2

(
1√

1− y2

(
k − iα

2

2

))2

+
α2

2
ν(ν − 1)
1− y2

.

(22)

In the next section we will show that the Heisenberg-Weyl
algebra of the symmetric Pöschl-Teller model in natural coor-
dinates is a closed algebra and that it can be used to construct
states and spectral energies algebraically.

IV. THE HEISENBERG-WEYL ALGEBRA OF THE
SYMMETRIC PÖSCHL-TELLER MODEL

In this section we construct the spectral algebra for the
Hamiltonian HSPT(k, y), Eq. (22). A straightforward cal-
culation yields (for the ease of writing we drop the subscript
on HSPT in what follows):

[y, k] =iα2(1− y2)
[H, y] =− ik

[H, k] =iα2

(
2yH − α2

4
y − ik

)
.

(23)

Calculating the commutators [H, [H, y]] and [H, [H, k]] we
find that no new operators are generated. Hence the algebra is
closed. This means that there exist combinations of operators
y and k that can serve as spectral operators.

Note that the right-hand side of Eq. (23) depends on the
Hamiltonian H reflecting the energy dependence of oscillat-
ing frequency. This also means that the resulting algebra is
deformed. To find the correct combination of operators y and
k, that serve as spectral operators, is nontrivial. The essence
of the structure of ladder operators can be guessed from the
work in Ref. [5]. We can formalize the calculation as follows.
Note that the last two equations of (23) can be written in a
matrix form,

H
(
y k

)
=
(
y k

)(H iα2(2H − α2/4)
−i H + α2

)
. (24)

Matrix on the right hand side can be diagnoalized by a simple
similarity transformation, M = JMdJ

−1 where

J =
(
−iα(

√
2H + α/2) iα(

√
2H − α/2)

1 1

)
. (25)

The diagonal matrix Md reads,

Md =
(
H + α2/2− α

√
2H 0

0 H + α2/2 + α
√

2H

)
.

(26)
The spectral operators are essentially two combinations given
by
(
y k

)
J . It follows immediately that the following two

operators can serve as spectral ladder operators:

a =
1
α2

[
y

(
α
√

2H +
α2

2

)
+ ik

]
a† =

1
α2

[(
α
√

2H +
α2

2

)
y − ik

]
.

(27)

The operators a and a† obey an algebra that can be used to
construct the spectrum of the system,

[H, a] = −a
(
α
√

2H − α2

2

)
= −

(
α
√

2H +
α2

2

)
a

[
H, a†

]
=
(
α
√

2H − α2

2

)
a† = a†

(
α
√

2H +
α2

2

)
.

(28)

An important side benefit of this construction is that we can
also evaluate any commutator of the form [F (H), y] and
[F (H), k] where F (H) is an analytic function of the Hamilto-
nian. We simply read of the needed relations from the matrix
equation F (H)

(
y k

)
J =

(
y k

)
JF (Md). Alternatively,

we can also use this result to evaluate any commutators of
the form [F (H), a] and [F (H), a†]. In fact, the second set of
equalities in (28) was determined this way.

The calculation of the commutator and the anti-commutator
of a and a† is straightforward but lengthy. It is the best to
calculate the following two products first

aa† =− ν(ν − 1)

√
2H
α + 1
√

2H
α

+

(√
2H
α

+ 1

)2

a†a =− ν(ν − 1)

√
2H
α√

2H
α − 1

+

(√
2H
α

)2

.

(29)

Then we obtain[
a, a†

]
=f(H)

f(H) =1 + 2
√

2H
α

+
ν(ν − 1)

√
2H
α (

√
2H
α − 1)

{
a, a†

}
=

1
2
− ν(ν − 1)

2
(√

2H
α

)2

− 1
√

2H
α (

√
2H
α − 1)

+
1
2

(
2
√

2H
α

+ 1

)2

.

(30)

The algebra also has a quadratic invariant Casimir operator C,
[8] and [9]. It equals C = ν(ν − 1) and it codes the strength
of the potential.

The spectral algebra of the model is given by Eqs. (28) and
(30). It is a two-function deformed SU(1, 1) algebra. If we
make the identifications

a† ↔ S+ , a↔ S− , H ↔ S0 , (31)

we have
[S+, S−] =f(S0)
[S0, S+] =g(S0)S+

[S0, S−] =− S−g(S0) ,
(32)
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where g(S0) = α
√

2S0 − α2

2 .
Now we show that the complete spectrum of the system

can be constructed from the algebra alone. A representation
is characterized by a parameter, see Eq. (18),

ν =
1
2

(
1 +

√
1 +

4
β2ω2

)
. (33)

The ground state is defined by

a|ψ0; ν〉 = 0 , H|ψ0; ν〉 = E0|ψ0, ν〉 . (34)

Using Eq. (27) we can convert this relation into a first order
differential equation and we can obtain the ground state wave-
function in y-space representation

ψ0(y) = 〈y|ψ0; ν〉 =

√
αΓ (ν + 1)
√
πΓ
(
ν + 1

2

) (1− y2)ν/2 . (35)

The easiest way to determine the ground state energy is to
evaluate the expectation value of a†a in the ground state.
Then, we get

E0 =
α2ν2

2
. (36)

From the spectral algebra (28) it is clear that operators a
and a† act as energy-state lowering and raising operators, re-
spectively. Excited states are obtained by applying powers of
the creation operator a† on the ground state,

|ψn; ν〉 = Nn
(
a†
)n |ψ0; ν〉 , (37)

where Nn is a normalization constant.
Let the state |ψn; ν〉 be an eigenstate of the Hamiltonian H

with energy En. Then the state a†|ψn; ν〉 is also an eigen-
state of H but with energy En+1 and the state a|ψn; ν〉 is an
eigenstate of H with energy En−1:

H|ψn; ν〉 = En|ψn; 〉

Ha†|ψn; ν〉 = a†
(
H + α

√
2H + α2/2

)
|ψn; ν〉

=
(
En + α

√
2En + α2/2

)
a†|ψn; ν〉

= En+1|ψn; ν〉

Ha|ψn; ν〉 = a
(
H − α

√
2H + α2/2

)
|ψn; ν〉

=
(
En − α

√
2En + α2/2

)
a|ψn; ν〉 =

= En−1a|ψn; ν〉 .

(38)

Equation (38) can be rearranged to read√
2En+1 =

√
2En + α . (39)

By iterating this relation, starting from the ground-state en-
ergy, we get the energy spectrum. The result for the Pöschl-
Teller model reads

ESPT
n =

α2

2
(n+ ν)2 , n = 0, 1, 2, . . . , (40)

and it is in agreement with the well known result [10].
Recall that the energy of the oscillator with minimal length

uncertainty relations is shifted relative to that of the symmetric
Pöschl-Teller model. Therefore

EOSC
n =

α2

2
(n+ ν)2 − 1

2β
=

ω

(
n+

1
2

)√
1 +

ω2β2

4
+
ω2β

2

((
n+

1
2

)2

+
1
4

)
.

(41)

This is also in agreement with the previous results in [1] and
[2].

It is not difficult to derive the explicit relations between
states |ψn; ν〉 and states |ψn±1; ν〉. We have

a†|ψn〉 = κn+1|ψn+1〉 , a|ψn〉 = κn|ψn−1〉 . (42)

Taking a diagonal matrix element of [a, a†] = f(H) and using
the explicit expression for energy eigenvalue we obtain the
recursion relation for the coefficients κn

〈ψn; ν|
[
a, a†

]
|ψn; ν〉 = |κn+1|2 − |κn|2 = f(En)

= 1 + 2(n+ ν) +
ν(ν − 1)

(n+ ν)(n+ ν − 1)
.

It is easy to find the solution (we take κn to be real)

κn =
√

(n+ ν)2 − ν(ν − 1)
n+ ν

n− 1 + ν

=
√

n+ ν

n− 1 + ν

√
n(n+ 2ν − 1) .

(43)

The normalization constant Nn can also be computed. From
Eq. (37), we have

|ψn; ν〉 =Nn(a†)n|0; ν〉
Nn
Nn−1

a†|ψn−1; ν〉 =
Nn
Nn−1

κn|ψn; ν〉 .
(44)

Then, using 〈0; ν|0; ν〉 = 1, and iterating, we calculate

Nn =
1

κnκn−1 . . . κ1
=

√
νΓ(2ν)

(ν + n)n!Γ(2ν + n)
. (45)

It is not too difficult to calculate the wave function in the y-
space. Let

ψνn(y) = 〈y|ψn; ν〉 . (46)

From Eq. (44), using the creation operator written in terms of
k and y operators, Eq. (27), we find

ψνn(y) =
1

α2κn

(
yg(En−1)− α2(1− y2)

d

dy

+
α2

2
y

) √
2En−1 + α√

2En−1

ψνn−1(y) .
(47)
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Starting from the explicit wave function for the ground state
and making use of the differential equation satisfied by
Gegenbauer polynomials, see Ref. [3], we find

ψνn(y) = 2νΓ(ν)

√
αn!(n+ ν)
2πΓ(n+ ν)

(1− y2)ν/2Cνn(y) , (48)

where Cνn(y) is a Gegenbauer polynomial. From this we can
obtain immediately the wave function of an oscillator in the
minimal length quantum mechanics [2]

ΨOSC
n (y) = 2νΓ(ν)

√
αn!(n+ ν)
2πΓ(n+ ν)

(1− y2)(
ν+γ/β

2 )Cνn(y) .

(49)
In this section we have constructed, by using algebraic fac-

torization methods, and without the explicit knowledge of the
exact solution, a pair of creation and annihilation operators
for the model. The two operators obey a deformed SU(1, 1)
algebra. Then we have calculated the exact energy eigenval-
ues and the energy eigenstates. The states are characterized
by a single parameter ν that is determined by the strength of
the potential in the symmetric Pöschl-Teller model case or by
the parameter β that measures deformation of the uncertainty
relation of the quantum mechanics and gives the fundamental,
minimal possible resolution of length.

V. THE PHYSICS BEHIND THE CONSTRUCTION

In this section we offer some insight into the problem of
quantization in the deformed quantum mechanics.

The deformed commutator (3) can be written as

[x, p] = i(1 + 2mβH0) , H0 =
1

2m
p2 , (50)

whereH0 is the Hamiltonian of a free particle of massm. The
Heisenberg-Weyl algebra of the oscillator reads

[H,x] =− ip(1 + 2mβH0)

[H, p] =iω2x(1 + 2mβH0) + ω2mβp(1 + 2mβH0) .
(51)

However, these equations are incomplete because there are, in
fact, four relevant operators, x, p,H0 and H , at the start. We
need additional commutators

[H0, p] =0
[H0, x] =− ip(1 + 2βH0)

[H,H0] =i
ω2

2
(xp+ px)(1 + 2βH0)

+2βω2H0(1 + 2βH0) .

(52)

Eqs. (50), (51) and (52) clearly highlight the source of the
problem. In the deformed theory, the algebra contains two
Hamilton operators. Together, they fail to close the algebra.
Their commutator generates new operators such as xp + px
and H2

0 . We can try to modify the algebra from the start by
adding all these new operators but this is of no help. New

operators when added will generate more new operators and
cycle will never end.

Note however, that H0, p and x form a closed subalgebra.
This offers a possibility to find the quantum theory of some
H ′0 ∝ H0 in H0 deformed quantum theory. This will select a
basis in the Hilbert space such that the basic commutator [x, p]
is diagonal. This basis can then be used to compute the matrix
elements ofH . Of course, in this basisH is not diagonal. The
remaining problem then is to find the unitary transformation
U in the Hilbert space such that H ′ = U†HU is diagonal. In
general, this can be difficult. Final states that diagonalize H
are linear combinations of states that diagonalize H0. Possi-
bly, these are some coherent states. As a result, solving the
quantum problem in the deformed theory doubles the work
as we have to solve more than just one quantization problem.
The reason why the ordinary quantum theory is much easier is
simply a consequence of the fact that in the ordinary quantum
theory the basic commutator is already diagonal and requires
no additional work.

In fact, the two transformations we used in Sections III and
IV to quantize the oscillator

p =
1√
β

tan
√
βρ , & y = sin

√
βρ , (53)

carry out the program we just described. For another possibil-
ity see [11] and [15].

In the present case there are also some lucky circumstances
related to the fact that the potential energy of the harmonic os-
cillator is simply a quadratic operator. Any other potential en-
ergy function would be more complicated. The situation then
reminds us of the case of the Klein-Gordon relativistic equa-
tion where the Hamiltonian is given by H =

√
c2p2 +m2c4

and c stands for the speed of the light. The solution is to
formulate the equation based on H2, or to linearize with the
price of introducing multi-component wave-functions. It is
not clear at present how far one can carry out such enterprize
for interesting potentials. Another possibility would be to ex-
pand the more complicated potential energy V (x) around the
oscillator but this is likely to run into convergence issues. Per-
haps the answer is to study more closely the natural coordi-
nates of [5] for other potentials.

VI. COMPARISON WITH PRIOR WORK

In this section we show the connection of our results with
prior works.

We begin by taking a closer look at the Heisenberg-Weyl al-
gebra realized in terms of operators a and a† in Eq. (28). We
observe that it can be written in a simpler form that closely re-
sembles the algebra of the harmonic oscillator in the ordinary
quantum mechanics. Define a new operator

N =
1
α

√
2H − c , (54)

where c is some constant we will fix shortly. The part of the
algebra involving the Hamiltonian takes on the form satisfied
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by the number operator,

[N, a†] = a† , [N, a] = −a . (55)

However, this is still a deformed algebra and not the algebra
of the oscillator in the ordinary quantum mechanics because
the commutator of a and a† is deformed

[a, a†] =1 + 2(N + c) +
ν(ν − 1)

(N + c)(N + c− 1)
=φ(N + 1)− φ(N) ,

(56)

where

a†a =φ(N) = (N + c)2 − ν(ν − 1)
N + c− 1

− ν(ν − 1)

aa† =φ(N + 1) .
(57)

Using Eq. (57) we can understand the spectrum a bit better.
Let |0〉 be a normalized ground state defined by

a|0〉 = 0 . (58)

We want to interpret operator N as a number operator. This
means that we expect N |0〉 = 0. It then follows, φ(N)|0〉 =
φ(0)|0〉 = 0, or

φ(0) = 0 . (59)

This equation determines the constant c. There are three pos-
sible solutions, c = 0, ν and 1 − ν. The solution c = 0 is
not acceptable because it implies φc=0(1) =∞. The solution
c = 1 − ν, at least on the surface, appears to be equivalent
to the solution c = ν, because it amounts to a redefinition of
the parameterization of the strength of Pöschl-Teller potential,
see Eq. (18). We choose the solution

c = ν . (60)

With this choice the function

φ(n) = (n+ ν)2 − ν(ν − 1)
n+ ν − 1

− ν(ν − 1) (61)

has no zeros for any positive integer[16]. There is an infinite
tower of states of the form |n〉 ∝ a†

n|0〉. These are precisely
the states we have constructed in Section IV.

We can now establish the relation to prior art. We can relate
operators a and a† to a pair of ordinary Bose operators b and
b†as follows. Let us define

N = b†b ,
[
b, b†

]
= 1

[N, b] = −b ,
[
N, b†

]
= b† .

(62)

The function φ(N) can be written in a factorized form

φ(N) =
N + ν

N + ν − 1
N(N + 2ν − 1) . (63)

The mapping to Bose operators is given as follows, [9],

a† =

√
φ(N)
N

b† = b†
√
φ(N + 1)
N + 1

a =b

√
φ(N)
N

=

√
φ(N + 1)
N + 1

b .

(64)

Then the Hamiltonian takes the form

HSPT =
α2

2
(
b†b+ ν

)2
. (65)

This is precisely the results found in Ref. [6] for the Pöschl-
Teller model. For the oscillator in the minimal uncertainty
length quantum mechanics we must include the additive con-
stant 1/2β

HOSC =
βω2

2
(
b†b+ ν

)2 − 1
2β

=
β

2
N2 +

βν

2

(
N +

1
2

)
.

(66)

This is precisely the result obtained in Ref. [4].
We can also view our result as a deformation of SU(1, 1)

algebra. Let operators K± and K0 be the generators of an
ordinary undeformed SU(1, 1) algebra. They satisfy commu-
tator relations [K0,K±] = ±K± and [K−,K+] = 2K0. It is
well known that the SU(1, 1) algebra can be constructed by
a suitable deformation of the ordinary single boson oscillator
algebra. For example,

K+ =
√
N + 2ν − 1 b† = b†

√
N + 2ν ,

K− =b
√
N + 2ν − 1 =

√
N + 2ν b ,

K0 =N + ν .

(67)

We note that the algebra of K operators is characterized
uniquely by the parameter ν that determines the strength of
the Pöschl-Teller potential, because the Casimir operator is
given by CK = ν(ν − 1). We can write Eq. (64) in terms of
the SU(1, 1) generators

a† =

√
N + ν

N + ν − 1
K+ = K+

√
N + ν + 1
N + ν

a† =K−

√
N + ν

N + ν − 1
=

√
N + ν + 1
N + ν

K−

H =
α2

2
K2

0 .

(68)

This the result obtained in [6]. We must stress again that
SU(1, 1) appearing here is not a dynamical symmetry group!

The dynamical symmetry group is simply the dynamical
SU(1, 1) of the Bose oscillator b and b†. We have S+ = 1

2b
†2,

S− = 1
2b

2 and S0 = 1
4 (bb† + b†b). States are divided into

two infinite dimensional representations of this SU(1, 1), as
explained earlier. Even n states belong to the Bargman in-
dex k = 1/4 representation and odd n states belong to the
k = 3/4 representation. Deformation does not mix these
two representations. We can also define a deformed algebra
quadratic in operators a and a† as follows. Let T− = 1

2a
2,

T+ = 1
2a
†2 and T0 = S0. Operators T± and T0 satisfy com-

mutators of the form [T0, T±] = ±T± and [T−, T+] = G(T0).
It is not hard to work out the explicit form of T± and G(T0).
However, the corresponding quadratic Casimir operator is
zero and offers no new information.
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In a way this completes the story of how to quantize the
system in the deformed quantum mechanics. Simply search
for an undeformed system that is acceptable both to the de-
formed commutator [a, a†] = 1+2H0 and to the Hamiltonian
H of the model studied. This task however may not be easy to
carry out. The moral of the story is that the deformed theory
should probably considered as a constrained system and the
quantization must then be carried according to the rules for
quantization of constrained systems explained by Dirac [14].

VII. THE D-DIMENSIONAL ISOTROPIC HARMONIC
OSCILLATOR

In this section we consider the D-dimensional extension
of the minimal length uncertainty quantum mechanics. The
problem is quite interesting because the extension to higher
dimensions implies that spatial coordinates do not commute
[12]. It is a lucky circumstance that rotational symmetry is
preserved. This means that isotropic systems can be reduced
to a quantization of some effective one-dimensional model on
the positive real line.

In D-spatial dimensions the deformed basic commutators
are given by

[xi, pj ] =i
(
1 + βp2

)
δij + iβ′pipj

[pi, pj ] =0

[xi, xj ] =− i
(
(2β − β′) + (2β + β′)p2

)
Lij ,

(69)

where Lij = 1
1+βp2 (xipj − xjpi) are the components of the

angular momentum tensor [1, 2] . The third commutator in Eq.
(69) implies that the spatial coordinates are noncommutative.
Here we follow the notation and conventions of [2] where the
the Schrödinger equation for the oscillator model was solved.

The momentum space representation is available. In the
momentum space the momentum operators can be represented
as simple multiplication. The rotational symmetry implies

that the radial variable p =

√√√√ D∑
i=1

p2
i is a good variable. The

position operator is represented by

xi = i(1 + βp2)
∂

∂pi
+ iβ′pipj

∂

∂pj
+ iγpi . (70)

Variables pi, i = 1, 2, . . . , D, run from −∞ to∞. The mea-
sure is given by

dµ = VD−1(1 + (β + β′)p2)α−1pD−1dp , (71)

where VD−1 is a volume of the D − 1 dimensional sphere
and 0 ≤ p ≤ ∞. The constant α in the measure is given
by α = γ

β+β′ − β′

β+β′
D−1

2 . Because of the rotational sym-

metry the square of the operator
D∑
i=1

x2
i will involve the D-

dimensional Laplace operator that can be expressed in spheri-
cally symmetric coordinates∇2

p = ∂2

∂p2 + D−1
p

∂
∂p −

l(l+D−2)
p2 ,

where angular momentum quantum number is an integer,
l = 0, 1, . . . ,. There is a usual degeneracy in the magnetic
quantum number. The wave functions is factorized into a ra-
dial and angular part according to Ψ(pi) = Ψ(p)Y (Ω) where
Y (Ω) is a D-dimensional generalization of spherical harmon-
ics. In writing the decomposition of the wave function we
have suppressed the angular quantum number l. The Hamil-
tonian of the isotropic D-dimensional oscillator is given by

H =
D∑
i=1

(
1

2m
p2
i +

mω2

2
x2
i

)
=

1
2m

p2 +
mω2

2
x2 , (72)

where the expression after the second equality sign is given in
radial coordinates. The operator x2 reads explicitly (we use
the shorthand notation L2 = l(l +D − 2)),

−x2 =

„
(1 + (β + β′)p2)

d

dp

«2

− L2

p2
+ (γD − 2βL2)

+

„
D − 1

p
+ ((D − 1)β + 2γ)p

«`
1 + (β + β′)p2´ d

dp

+
`
γ(βD + β′ + γ)− β2L2´ p2 .

(73)

As in the one-dimensional case we work with the Green’s
functionG(z). The transformation from the momentum space
to wave-vector is given by

p =
1√

β + β′
tan

√
β + β′ρ, (74)

see Ref. [2]. The wave-vector now runs over positive values,
0 ≤ ρ ≤ π

2
√
β+β′ . The similarity transformation Ψ(ρ) =

Jψ̃(ρ) with J = (cos
√
β + β′ρ)γ/(β+β′) removes all depen-

dence on the parameter γ. The Green’s operator matrix ele-
ment reads

G−1(z) =
π

2
√
β+β′Z

0

dµ(ρ) φ̃∗(ρ)

"
z −

`
tan
√
β + β′ρ

´2
2m(β + β′)

− mω2

2
x′

2

#
ψ̃(ρ) ,

(75)

where the measure is

dµ(ρ) =
(

tan
√
β + β′ρ

)D−1 (β + β′)(1−D)/2dρ(
cos
√
β + β′ρ

)2δ (76)

and δ = − β′

β+β′
D−1

2 . The operator x′2 is given by

−x′2 =
d2

dρ2
− 2βL2

− L2(β + β′)

tan2
√
β + β′ρ

− β2L2

β + β′
tan2

p
β + β′ρ

+
(D − 1)

√
β + β′

tan
√
β + β′ρ

„
1 +

β

β + β′
tan2

p
β + β′ρ

«
d

dρ
.

(77)

Operator x′2 involves the term with the first derivative. This
is typical for higher dimensional theories. Such term can
be eliminated by another similarity transformation, ψ̃(ρ) =
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Jψ(ρ), where J =
(

(cos
√
β+β′ρ)β/(β+β′)

sin
√
β+β′ρ

)(D−1)/2

. Finally,

we arrive at the Green’s function written in terms of the
Hamiltonian of the equivalent Pöschl-Teller model

G−1(z) = constant×
π/2α∫
0

dx φ∗(x) (z′ −HPT)ψ(x) ,

(78)
where

HPT =
1
2
p2 +

(2α)2

8
ν(ν − 1)
cos2 αx

+
(2α)2

8
µ(µ− 1)
sin2 αx

. (79)

In writing the Hamiltonian in equation (79) we have rescaled
the variable ρ and have defined several new constants, and
have also performed a shift in the energy variable z. The fol-
lowing definitions apply:√

β + β′ρ =αx , (β + β′)mω2 = α2

j =l +
D − 3

2
, l = 0, 1, · · · , p = i

d

dρ

ν(ν − 1) =
β2

(β + β′)2
j(j + 1)− ββ′

(β + β′)2
D − 1

2

+
1

m2ω2(β + β′)2

µ(µ− 1) =j(j + 1)

z′ =z +
1

2m(β + β′)

−mω
2β′(β′ + 2β)
2(β + β′)

(
j(j + 1) +

D − 1
2

)
.

(80)

We should note the following about Eq. (80). In the defi-
nition of the parameter ν, the first two terms originate from
the oscillator potential energy. The third term originates from
the oscillator kinetic energy. The parameter µ also originates
completely from the oscillator potential energy term. In the
limit, D = 1, l = 0 and β′ = 0, the result reduces to the one-
dimensional case; in the same limit the parameter µ becomes
zero and the energy parameter z′ become the same as in the
one-dimension.

The natural coordinates for the Pöschl-Teller model are

y = cos 2αx
k =− α{p, sin 2αx} .

(81)

After some calculation we arrive at the Heisenberg-Weyl al-
gebra in natural coordinates

[y, k] =i(2α)2(1− y2)
[H, y] =− ik

[H, k] =i(2α)2
(

2yH − ik +
(2α)2

4
y

)
+

(2α)2

4
(ν(ν − 1)− µ(µ− 1)) .

(82)

This algebra is closed and similar to that of the symmetric
Pöschl-Teller model of Section IV. However, there is an im-
portant difference, the central term in the [H, k] commutator.
This means that ladder operators will contain an extra term in
addition to a linear combination of y and k operators. Follow-
ing the construction outlined in Section IV we obtain

a =
1

4α2

[
y(2α

√
2H + 2α2) + ik − 4α4C

2α
√

2H − 2α2

]
a† =

1
4α2

[
(2α
√

2H + 2α2)y − ik − 4α4C

2α
√

2H − 2α2

]
,

(83)

where

C = ν(ν−1)−µ(µ−1) =
(
ν − 1

2

)2

−
(
µ− 1

2

)2

. (84)

Ladder operators satisfy the commutator relations

[H, a] =− a
(

2α
√

2H − 2α
)

= −
(

2α
√

2H + 2α
)
a

[H, a†] =
(

2α
√

2H − 2α
)
a† = a†

(
2α
√

2H + 2α
)
.

(85)

The second set of equalities follows from commutator rela-
tions also satisfied by ladder operators

[
√

2H, a] =− 2αa

[
√

2H, a†] =2αa† ,
(86)

which indicates that the square root of the Hamiltonian be-
haves as a natural number operator for a and a†.

The central term makes appearance in operator products
a†a and aa†, or in the commutator [a, a†] and the anti-
commutator {a, a†}. After tedious calculations we find

a†a = φ(
√

2H) =− Q

2

√
2H
2α√

2H
2α − 1

+

(√
2H

2α

)2

+
C2

4

√
2H
2α(√

2H
2α − 1

)(
2
√

2H
2α − 1

)2

aa† =φ(
√

2H + 2α) ,

(87)

where

Q = ν(ν − 1) + µ(µ− 1) =
(
ν − 1

2

)2

+
(
µ− 1

2

)2

− 1
2
.

(88)
The ground state of the model is defined by

a|0; ν, µ〉 = 0 . (89)

The existence of the ground state solution to equation (89)
implies some restrictions on identification of the square root
of the Hamiltonian with the number operator. Using Eq. (86)
we define

√
2H

2α
= N + d , (90)
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where N is an ordinary number operator for operators a and
a† defined by [N, a] = −a and [N, a†] = a† and d is some
constant. The existence of the ground state solution deter-
mines the possible values of parameter d. We have

φ(N = 0) = 0 = −Q
2

d

d− 1
+d2 +

C2

4

d

(d− 1)(2d− 1)2
. (91)

There are five solutions, d = 0, ν+µ2 , ν+1−µ
2 , 1−ν+µ

2 and
2−ν−µ

2 . With d = 0, the first excited state is infinite. The
third, the fourth and the fifth solutions appear to correspond
to different parameterizations of the potential of the model.
We work with d = ν+µ

2 . In general, if the combination
(ν + µ)/2 is not a positive integer, then there will be an
infinite tower of states. The function φ(

√
2H) factorizes

(
√

2H = 2α
(
N + ν+µ

2

)
),

φ(N) =N(N + ν + µ− 1)×
(N + 2ν−1

2 )(N + 2µ−1
2 )(N + ν+µ

2 )
(N + ν+µ−1

2 )2(N + ν+µ−2
2 )

.
(92)

The energy spectrum is given by

En =2α2

(
n+

ν + µ

2

)2

, n = 0, 1, 2, · · · ,

|n;ν, µ〉 ∝
(
a†
)n |0; ν, µ〉 ,

(93)

where we assumed that the ground state is normalized to unity.
One can show, using the explicit expression for ladder oper-

ators in terms of natural operators y and k, that energy eigen-
functions are in fact Jacobi polynomials P (ν−1/2,µ−1/2)

(n−l)/2 (y)
[3]. We also reproduce the energy formula given in Ref. [2] for
the D-dimensional isotropic oscillator with minimal length
uncertainty quantum mechanics

En,l = ω

„
n+

D

2

«
×s

1 +m2ω2

»
β2j(j + 1) +

β2 + β′2 − 2ββ′(D − 3)

4

–
+
mω2(β + β′)

2

„
n+

D

2

«2

+
mω2β′D

4

+
mω2(β − β′)

2

„
j(j + 1)− (D − 1)(D − 3)

4

«
.

(94)

Just like in one-dimension, the model can be described by
a deformation of a single constrained boson of ordinary one-
dimensional quantum mechanics. The constraint comes in the
form of the boson coordinate space being restricted to only
a segment of the real line. It is also interesting that the D-
dimensional model appears to allow finite dimensional repre-
sentations, see [16]. These deserve to be explored in more
detail.

VIII. SUMMARY AND OUTLOOK

In this paper we have studied harmonic oscillator models in
the quantum theory with minimal length uncertainty relations.

Such models may be relevant to quantum gravity at the Planck
scale or may appear as an effective theory where modified un-
certainty relations are introduced to capture certain features of
physics below some scale. Examples of the second kind are
models of rotational and vibrational spectra of molecules in
molecular and chemical physics and in heavy deformed nu-
clei in nuclear physics.

We have focused on using of operator techniques because
modification of the basic commutator of the quantum the-
ory implies appearance of minimal length and more generally
minimal momentum. This then means that the position and
the momentum operators cannot be diagonalized any more.
Consequently, the Schrödinger equation as a differential or
integral equation becomes unavailable. We have shown that
that operator techniques work and that complete knowledge
of the system can be obtained. The next obvious step would
be make generalizations and to consider models more com-
plicated than the oscillator. The Coulomb problem is the first
important candidate. Also, application to the field theory is
desired too.

It is also of interest to learn how operator techniques ex-
tensions work when both, the position and momentum are
limited by minimal uncertainties. This problem is in part re-
lated to q-oscillators. There exists a great deal of literature
on q-deformed oscillators. However, the present problem is
more general than the typical q-oscillators. First, the symme-
try principles place constraints on the form that the basic com-
mutator can take and this selects the applicable q-oscillators.
For example, in Ref. [13], an extension of the special relativity
that incorporates the minimal invariant length and the minimal
invariant momentum was constructed and in this particular ex-
tension of the basic commutator of quantum mechanics is de-
formed roughly as, αx2 + βp2 + γ(xp + px). The second
part involves of the present problem then involves the diag-
onalization of an arbitrary system in the basis defined by a
q-oscillator. This is a difficult problem.

Another interesting fact that follows from the present work
is that in both cases we can understand the quantization in
the deformed theory as a deformed ordinary Bose oscillator.
Perhaps this means that the deformed quantum mechanics is
in fact an ordinary quantum mechanics with very complicated
constraints. In that case the Dirac’s theory of quantization
with constraints, [14] may be an answer.

In closing let us also mention that the problem of the os-
cillator in a constant external field can also be incorporated in
the formalism. The constant external field simply adds a term
of the form Hint = gx to the Hamiltonian. Once the models
are transformed to Pöschl-Teller form there will be an extra
term with the first derivative present. Such term can always
be removed by an appropriate similarity transformation. Once
this transformation is carried out, the analysis goes through as
described in this paper.
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