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1. Problem formulation

A truck with a 4-stroke diesel engine travels along a straight road with constant speed. Near

the road is a microphone that senses the radiated acoustic noise from the truck during its

passage past the microphone. The output of the microphone is sampled at the rate of 12,000

samples/second and 30 seconds of data are recorded during the trucks transit which can be

found in the attached file: truck30sec.wav. During the recording of the data, the speed of

sound propagation in air was a constant 347 m/s.

Problem: Assuming that the truck is a point source, (a) Plot the spectrogram of the

acoustic data file truck30sec.wav and (b) Given that the strongest spectral line is the engine

firing rate, calculate the trucks

1. engine firing rate (in Hz),

2. cylinder firing rate (in Hz),

3. number of cylinders,

4. tachometer reading (in revolutions/minute),

5. speedometer reading (speed in km/hour),

6. distance (in meters) of the closest point of approach of the truck to the sensor,

7. time (in seconds) at which the closest point of approach occurs.
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2. Introduction

Discrete Fast-Fourier Transforms (FFT) can be used to estimate the frequency content of

discrete, finite time signals. The frequency content for stationary signals is constant in time

and the FFT is an appropriate analysis tool. However, the FFT is not localized in time which

is a limitation when estimating the frequency content of nonstationary signals. A solution is

to segment the original signal into smaller parts, compute the FFT for each part (usually with

some overlap to smooth transitions between segments) and assemble the output in temporal

order. This time-frequency (TF) representation is called a spectrogram and is an intuitive

way to display a signal’s frequency content in time. Time and frequency resolution are related

by the uncertainty principle, an increase in frequency resolution reduces the time resolution

and vice versa, e.g. estimating the instantaneous frequency (IF) of a source (such as a passing

airplane, vessel or a truck) is a tradeoff between time and frequency resolution. Alternatively,

IF estimates can be computed using the Wigner-Ville distribution. The following discussion

will address how to estimate the IF of a passing truck which is subsequently compared to the

output of a parametric model used to compute the parameters in the problem statement.

3. Analysis of Data

Spectrogram of passing truck

For a preliminary estimate of the truck’s parameters, two spectrograms are computed (Fig.

1) using data obtained from Ferguson and Culver (2014). Figure 1(a) indicates that the

the strongest spectral line (corresponding to the engine firing rate (EFR)) is close to 120

Hz. Several other spectral lines (and harmonics) can be observed as well as energy at

higher frequencies when the truck is closer to the microphone. If energy from a moving
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source is reflected from a boundary, its arrival pattern at the microphone corresponds to a

Lloyd’s mirror effect. No such effect is noticeable which might indicate that the recording

was performed close to the ground and that most of the reflected energy was scattered

or attenuated. Figure 1(b) shows a close up spectrogram of the strongest spectral line at

approximately 120 Hz. A doppler shift over the 30 second recording can be observed.
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(a) Spectrogram of passing truck
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(b) Strongest spectral line

Figure 1: (a) Spectrogram of truck30sec.wav with several spectral lines below 500 Hz. The

strongest spectral line (corresponding to the EFR) is at nominally 120 Hz. (b) Zoomed in

plot of spectrogram showing doppler shift of the EFR (frequency resolution 0.03 Hz, time

resolution 0.24 s, 75% overlap).

Parameter estimation

Vehicle parameters are estimated using a parametric model (Ferguson (1994)). Here, this

model approximates the instantaneous frequency of a constant tone emitted by the passing

truck of constant speed along a straight road. Four model parameters (EFR, speed of the

vehicle, distance from the microphone and time of closest approach) are varied and results
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are compared to the IF extracted from a TF plot using an acoustic recording (referred to as

data). Optimum parameters are found by minimizing the squared difference between model

output and data. The next two paragraphs will discuss how the TF plots are computed and

how the parametric model is implemented.

To estimate the IF of the EFR from the data, TF representations are computed using the

Short Time Fourier Transform (STFT) and the Pseudo-Wigner-Ville distribution (PWVD).

For both methods, the main variables are the sampling rate and window type. First, the

signal is filtered and downsampled to 6000 samples/sec to reduce computational load: the

lowpass filter has a pass-band edge at 250 Hz (0.1 dB ripple ratio in the pass-band) and -60 dB

stop-band attenuation at 500 Hz. Second, an appropriate window is selected. By definition,

instantaneous frequency equals the derivative of the phase and Cohen and Lee (1989) showed

that this is the case (for continuous time) as the window approaches a delta function (e.g. the

window vanishes). For discrete data, this is not possible and at least a rectangular window

is used to segment the data. In particular, for the Wigner-Ville distribution, cross-terms

around the main frequency component (Fig. 2(a)) cause discontinuities in the IF estimate

(Fig. 2(c)) and a window is required to smooth out the discontinuities. By the conventional

measure of TF resolution (the product of time and frequency ’bandwidths’), a Gaussian

window is optimal. By the measure of energy concentration, the prolate spheroidal function

(which the Kaiser window (Kaiser (1974)) approximates) is the better option. Therefore, a

Kaiser window (beta=4.5) is used to compute both STFT and PWVD plots (an example

using PWVD is show in Fig. 2(b)). The beta value is a trade off parameter between main-

lobe and side-lobe width, the value of 4.5 is selected by minimizing discontinuities in the peak

detection algorithm (Fig. 2(d)). The peak detection algorithm (Boashash (2003)) operates
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(a) Wigner-Ville Distribution
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(b) Pseudo Wigner-Ville Distribution (Kaiser window)
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Figure 2: Instantaneous frequency estimates using Wigner-Ville and Pseudo Wigner-Ville

distribution. The plot in (a) is computed using no window. Notice the narrow doppler shift

and significant cross-terms. The plot in (b) is computed using a Kaiser window (beta=4.5).

Plots in (c) and (d) show the output of the peak detection algorithm for (a) and (b), re-

spectively. The window eliminates discontinuities but increases oscillatory behavior at the

boundaries. Note the increased time-frequency resolution in (b) in comparison to the STFT

in Fig. 1(b).

Page 6



Kay Gemba, TC-SP 2014

over the range of the doppler shift (115 - 122 Hz) at each time step and selects the maximum

value. For IF estimates using the STFT, the power spectrum of each window is computed

before peak detection. The algorithm operates directly on the PWVD output. While it is

possible to further increase the IF accuracy for a nonstationary signal using an adaptive

window length (Lerga and Sucic (2009)), the current choice is deemed sufficient.

Estimating the model parameters is an optimization problem. The derivation of the

model is given in Ferguson (1994) and only a short introduction will be given here. The goal

is to minimize the squared difference between the data gtj and the model ftj :

minimize
f0,v,h,tc

N∑
j=1

(
gtj − ftj

)2
= minimize

f0,v,h,tc

[
(gt1 − ft1)

2 + (gt2 − ft2)
2 + ...+ (gtN − ftN )2

]
, (1)

where

ftj =
f0c

2

c2 − v2

(
1 − v2(tj − tc)

[h2(c2 − v2) + v2c2(tj − tc)2]1/2

)
. (2)

The optimization parameters EFR (f0), speed of the vehicle (v), distance from the micro-

phone (h) and time of closest approach (tc) are input to the model in Eq. (2). The speed

of sound c is a constant and the instantaneous frequency f at time tj is the output of the

model. The model output has the same temporal resolution (index j) as the data. While the

original paper suggests using the Gauss-Newton algorithm (GNA) on the partial derivatives

(w.r.t. the optimization parameters) in Eq. (2) to find an optimum solution, a different

implementation is selected here. A nonlinear least-squares optimization problem for vector-

valued functions (the right side of Eq. (1)) can be solved using a trust region reflective

algorithm (Levenberg-Marquardt Algorithm, LMA). The algorithm minimizes Eq. (1) using

the residual vector (gtj −ftj)2 (of length N) and not its final sum over the index j. The LMA

is an efficient implementation for a vector valued optimization problem because, unlike using

GNA, explicit knowledge of the partial derivatives of Eq. (2) is not required. The LMA is
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essentially a hybrid approach between the GNA and the method of steepest decent. Unlike

the GNA, the LMA does not require a good first estimate of the solution but might need

more iterations to converge. The possibility of local minima (for both GNA and LMA) can

be avoided by selecting different initialization values, i.e. parameter boundary values or the

set of parameters corresponding to the latest computed minimum.

Table 1 shows an overview of the probable range (lower and upper boundary) of param-

eters and initialization values (best guess) for the model. The probable range is determined

from the spectrogram in Fig. 1(b) and literature. Both EFR and time of closest approach

are estimated from the spectrogram: the EFR is expected to be between 116-121 Hz and

the time of closest approach occurs in the center of the doppler shift (between 10-22 s).

The upper range of the speed of the vehicle is limited by a scaling ambiguity around the

true speed (Cevher et al. (2009), given at approx. 72 km/h or greater), which can only be

resolved by providing the recording distance. The upper bound for the recording distance

is unknown and is assumed to be less than 100 m. Initialization values are selected after a

coarse global grid search using the standard spectrogram function in MATLAB.

To estimate the cylinder firing rate (CFR), real cepstra of the data are computed (see

Oppenheim and Schafer (2004) for an introduction to concepts and cepstral glossary; see

Thomas and Wilkins (1970) for a discussion using cepstral analysis and autocorrelation to

find the CFR). The spectrum of the log of the spectrum of a time waveform is referred

to as the cepstrum, the independent variable is called quefrency and harmonics are called

rahmonics. The motivation for cepstral analysis is to separate periodic components in the

time signal.

Ideally, cylinder firing is periodic and should correspond to a clear peak in the cepstrum.
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However, this might not be true for trucks with computer controlled injection systems.

Here, it is assumed that this variation is small (or that the CFR is pseudo-periodic due to

constant speed of the truck and even terrain). The frequency of the CFR can be computed

by identifying the delay of the first rahmonic in the cepstrum and dividing the sampling

rate by the delay. Once the CFR is calculated, the number of cylinders p can be estimated

(Cevher et al. (2009)) using

p =
EFR

CFR
. (3)

In a 4 cycle engine, every piston has to go up and down twice to fire once and the tachometer

reading χ in rpm can be estimated as follows:

χ = CFR× 60 × 2. (4)

4. Results

Results for each TF method are shown in Fig. 3. The model approximates the data well

and results using the STFT as well as the PWVD are very similar. The LMA converges

to the optimum solution in all runs after roughly 40 iterations (less than one second). The

tolerance is set to 10−20 and gradients are computed using central difference scheme to

increase accuracy. The recording distance at the closest point is estimated to be 36.5 m and

speed of the vehicle is estimated just below 22 km/h. The EFR is consistent at 118.7 Hz

and the time of closest approach is at 15.8 s. Results for each method as well as final results

are summarized in Table 1.

Figure 4 shows a filtered and downsampled (1000 samples/sec) real cepstrum. The signal

is filtered for illustration purposes to eliminate tire and other noise sources at higher fre-

quencies. The first rahmonic at a delay of 51 samples corresponds to a CFR of 19.6 Hz. To
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(a) TF plot using STFT with fitted model
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(b) TF plot using PWVD with fitted model

Figure 3: Parameter estimation results. (a) Time-frequency plot using STFT with frequency

resolution of 0.015 Hz and time resolution of 0.08 s (75% window overlap). (b) Time-

frequency plot using PWVD with twice the resolution of (a) using a smoothing window of

8999 points.

Table 1: Parameter overview, input range to the model and results. The last column shows

final results.

Parameter Probable range Initialization STFT PWVD Final results

EFR [Hz] 116 - 121 118.9 118.66 118.66 118.66

CFR [Hz] - - - - 19.77

Cylinders - - - - 6

Tachometer [rpm] - - - - 2372

Speed [km/hr] 0.1 - 72 19.4 21.89 21.83 21.85

Distance [m] 0.1 - 100 29.5 36.6 36.4 36.5

Time [s] 10 - 22 16 15.74 15.79 15.77
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Figure 4: Zoomed in real cepstrum of truck30sec.wav (sampling rate of 1000 samples/sec).

The first rahmonic peak at nominally 51 samples corresponds to a CFR of 19.6 Hz.

increase the sample resolution, a real cepstrum is computed with the original sampling rate.

Erratic peaks due to the increased resolution are smoothed by applying a window. Results

are similar to Fig. 4, a distinct peak at 607 samples corresponds to a CFR of 19.77 Hz. The

number of cylinders (Eq. (3)) is found to be 6.002 ≈ 6. Values for 4,8,10, and 12 cylinders

correspond to theoretical delays of 33, 66, 83, and 100, respectively. Examining Fig. 4, the

closest peak to a delay of 33 samples is found at 26 samples (no match). There are no peaks

close to 66 and 83 samples and the peak at 100 samples (possible match) is likely a rahmonic

of 51 samples (a V12 should be a multiple of a V6). In addition, the lowest deterministic

tone (in the spectrum) is called the cylinder fire rate (Cevher et al. (2009)) and is found to

be nominally 20 Hz by visual inspection. This result is close to the above 19.77 Hz which

suggests that the vehicle has 6 cylinders. An estimate for the tachometer reading (Eq. (4))

is computed to be 2372 rpm. Final results are shown in the last column of Table 1.
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5. Discussion

Model output is fairly constant for most parameters. EFR and time of closest approach

shift the model output vertically and horizontally while both speed and distance dictate the

shape of the doppler curve. It seems plausible that the tradeoff between time and frequency

resolution has less effect on the center frequency and time of closest approach for high SNR

data. However, the distance of the microphone to the truck is sensitive to the TF resolution

of the data and results from the original paper (Ferguson (1994)) indicate that the model

overestimates this parameter for shorter ranges. It is found that an increased temporal

resolution corresponded to a lower range estimate, which is selected in the analysis. In

the absence of a ground truth (a preliminary recording of a 4-cylinder truck did not yield

acceptable SNR), calibration parameters are closely matched to values cited in Ferguson

(1994). While both rectangular and Kaiser windows were used to compute preliminary

estimates, final results are largely invariant to the choice of the window.

The current approach might be improved by treating the TF plot as an image, and

enhance the ’ridge’ using edge enhancement/detection (Sobel operators or Canny edge en-

hancement). The output from the model can be transformed to a 2D image which would

render the peak detection algorithm obsolete.
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