Robust multi-frequency sparse Bayesian learning: data results

Kay L. Gemba1, Santosh Nannuru, Ned Richards, William S. Hodgkiss, and Peter Gerstoft

Marine Physical Laboratory of the Scripps Institution of Oceanography
University of California at San Diego
1gemba@ucsd.edu
Presentation objectives

We investigate SBL performance for MFP and CBF and demonstrate using data:

1. SBL behaves similarly to an adaptive processor. The output of SBL is compared to the white noise constraint (WNC), MVDR, and MUSIC processor in a two-source MFP scenario. SBL performs similar to MUSIC and is robust to a "degree" of array-tilt mismatch.

2. SBL can be used to help identify ray-arrivals for CBF.

- Results are demonstrated with simulated and the SwellEx-96 & Noise-09 data.
SNR Localization Curves – Simulation Intro

S\textsubscript{1}S\textsubscript{2}R = 3 dB

No mismatch

1° tilt mismatch

Bartlett

WNC -3dB

SBL

MUSIC

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
Simulations
166 & 201 Hz

No mismatch
1° tilt mismatch

(a) (c)

(b) (d)

1F
2F

SNR [dB]

F_L

SBL
Bartlett
WNC -3dB
MVDR
MUSIC
Simulations 166 Hz and 201 Hz

SNR vs mismatch

- **0 dB**
- **-5 dB**
- **-10 dB**
- **-20 dB**

Array tilt mismatch [deg]

SNR f2 vs SNR f1

- **-10 dB**
- **-15 dB**
- **-20 dB**

SNR f1 [dB]
SWellEx-96 2-Source Localization: 166 Hz

0° tilt (more mismatch) 1° tilt (less mismatch)

Bartlett

WNC -3dB

SBL

MUSIC
SWellEx-96 2-Source Localization: 166 & 201 Hz

0° tilt (more mismatch)

1° tilt (less mismatch)

Bartlett

WNC -3dB

SBL

MUSIC
SWellEx-96 Event S5 2-Source Localization

0° tilt (more mismatch) 1° tilt (less mismatch)

![Graphs showing the comparison of 0° and 1° tilt in SWellEx-96 Event S5](image)

- Bartlett
- WNC -3dB
- SBL
- MUSIC
SWellEx-96 Event S59:

- 1 source (60 m) & 1 interferer (surface)
- 45 Processed Frequencies:
 - 166 201 Hz (top set at 158 dB)
 - Entire 2nd set (13 F at 132 dB)
 - +/- 1 bin
- FFT Length: 4096 samples
- Fs: 1500 Hz
- 21 Snapshots @ 50% overlap / segment
Event S59: Deep Source with Surface Interferer
Conclusions

• SBL behaves similarly to an adaptive processor and can discriminate against sidelobes. For MFP, SBL performance is comparable to MUSIC.

• SBL appears robust to modest data replica mismatch demonstrated using array-tilt. It also appears robust in situations when multiple snapshots or frequencies correspond to adjacent range-depth cells at the expense of possible additional solutions (SBL yields an ambiguity surface).

• SBL requires less tuning than Basis Pursuit and is computationally faster.

• SBL appears as a convenient tool in identifying ray arrivals.

Gemba K L, Nannuru S, Gerstoft P, and Hodgkiss W S. Multi-frequency sparse Bayesian learning for matched field processing in the presence of mismatch, J Acoust. Soc. Am., to be submitted
- End of presentation -
SBL MFP

SBL ver. 2.23 (explicit $N_{\text{sources}}=1$ for noise)

SBL ver. 2.6 (automatic noise estimate)

Depth [m]

Range [km]

6 F SWellEx-96 Paper Example