

Robust multi-frequency sparse Bayesian learning: data results

Kay L. Gemba¹, Santosh Nannuru, Ned Richards William S. Hodgkiss, and Peter Gerstoft

Marine Physical Laboratory of the Scripps Institution of Oceanography University of California at San Diego ¹gemba@ucsd.edu

Presentation objectives

We investigate SBL performance for MFP and CBF and demonstrate using data:

- 1. SBL behaves similarly to an adaptive processor. The output of SBL is compared to the white noise constraint (WNC), MVDR, and MUSIC processor in a two-source MFP scenario. SBL performs similar to MUSIC and is robust to a "degree" of array-tilt mismatch.
- 2. SBL can be used to help identify ray-arrivals for CBF.
- Results are demonstrated with simulated and the SwellEx-96 & Noise-09 data.

SNR Localization Curves – Simulation Intro

Simulations 166 Hz and 201 Hz

SWellEx-96 2-Source Localization: 166 Hz

SWellEx-96 2-Source Localization: 166 & 201 Hz

SWellEx-96 Event S5 2-Source Localization

SWellEx-96 Event S59 JD 134, 11:45 GMT to JD 134, 12:50 GMT

SWellEx-96 Event S59:

- 1 source (60 m) & 1 interferer (surface)
- 45 Processed Frequencies:
 - 166 201 Hz (top set at 158 dB)
 - Entire 2nd set (13 F at 132 dB)
 - +/- 1 bin
- FFT Length: 4096 samples
- Fs: 1500 Hz
- 21 Snapshots @ 50% overlap / segment

Event S59: Deep Source with Surface Interferer

Conclusions

- SBL behaves similarly to an adaptive processor and can discriminate against sidelobes. For MFP, SBL performance is comparable to MUSIC.
- SBL appears robust to modest data-replica mismatch demonstrated using arraytilt. It also appears robust in situations when multiple snapshots or frequencies correspond to adjacent range-depth cells at the expense of possible additional solutions (SBL yields an ambiguity surface).
- SBL requires less tuning than Basis Pursuit and is computationally faster.
- SBL appears as a convenient tool in identifying ray arrivals.

- End of presentation -

