

2015 ASA Conference, Jacksonville, Florida

Multiple snapshot compressive matched field processing

Kay L. Gemba, William S. Hodgkiss, and Peter Gerstoft

Marine Physical Laboratory Scripps Institution of Oceanography University of California, San Diego gemba@ucsd.edu

CS approach to geophysical data analysis

Presentation Objectives

- 1. Compressive sensing (CS) is equivalent in tracking performance to the Bartlett processor for a single-source scenario using single and multiple snapshots.
- 2. CS behaves equivalently to an adaptive processor. The output of CS is compared to the white noise constraint (WNC) processor in a two-source scenario. The scenario includes geo-acoustic parameter mismatch, requiring each processor to discriminate against false source locations.
- Results are demonstrated using data (SwellEx-96)

Single Snapshot compressed sensing

Single snapshot minimization problem using ℓ_1 - norm.

4

Multiple Snapshot compressed sensing

Multiple snapshots (L is the # of snapshots)

$$\hat{\mathbf{X}} = \underset{\mathbf{X} \in C^{MxL}}{\operatorname{argmin}} \| B - SX \|_{2}^{2} + \lambda \| X \|_{21}$$

→ a new solution for every snapshot
 Thus complex amplitude of X can
 vary across snapshots

Conventional MFP:

$$\mathbf{x}(d,r) = \frac{1}{L} w^H (BB^H) w$$

Single magnitude for all snapshots

- S is $n \times m$ measurement/Dictionary matrix, m >> n
- x is $m \times L$ desired matrix which is sparse with r nonzero
- ε is the measurement noise

Bartlett processor

Compressive sensing

Tracking 2 sources – Processor comparison

Data source location (Interferer with SNR = 9)

- Injected source location (quiet source)
- CS computes 9 solutions
- WNC is constant at -2.5 dB
- Parameters:
 - Frequency: 166 Hz
 - Resolution:
 50 m range, 10 m depth
 - 28 snapshots (50% overlap, using 40 seconds of data for each event)

Tracking 2 sources

CS has adaptive capabilities

Conclusions

- CS and the Bartlett processor yield identical localization results for a single source using single and multiple snapshots.
- CS is comparable to the performance of the WNC processor. It behaves similar to an adaptive processor and can discriminate against false source locations.
- The connection between WNC and CS requires further investigation.

- End of presentation -