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The multi-snapshot, multi-frequency sparse Bayesian learning (SBL) processor is derived and its

performance compared to the Bartlett, minimum variance distortionless response, and white noise

constraint processors for the matched field processing application. The two-source model and

data scenario of interest includes realistic mismatch implemented in the form of array tilt and

data snapshots not exactly corresponding to the range-depth grid of the replica vectors. Results

demonstrate that SBL behaves similar to an adaptive processor when localizing a weaker source

in the presence of a stronger source, is robust to mismatch, and exhibits improved localization

performance when compared to the other processors. Unlike the basis or matching pursuit meth-

ods, SBL automatically determines sparsity and its solution can be interpreted as an ambiguity

surface. Because of its computational efficiency and performance, SBL is practical for applica-

tions requiring adaptive and robust processing. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4983467]

[ZHM] Pages: 3411–3420

I. INTRODUCTION

Matched field processing (MFP) is a generalized beam-

forming method which matches received array data to a dic-

tionary of replica vectors to localize one or several sources.1

Traditionally, the Bartlett processor2 is used as a point of

departure to estimate source location parameters. This locali-

zation problem can be reformulated as an underdetermined

system of linear equations which might be solved using algo-

rithms such as orthogonal matching pursuit3 or with an opti-

mization known as basis pursuit4 (BP). While a particular

algorithm might be selected or even tailored to meet the

need of a problem,5 estimating a sparse number of source

locations and amplitudes recorded with few sensors from

many more candidate Green’s functions is coined compres-

sive sensing.6,7

Compressive sensing (CS) implemented with the BP

method outperforms the high-resolution minimum variance

distortionless response8 (MVDR) or MUSIC (Ref. 9) meth-

ods, discriminating between multiple, coherent plane-wave

arrivals for the beamforming application.10 CS possesses

properties similar to an adaptive processor and offers mod-

est localization improvement when compared to the white

noise constraint11 (WNC) processor for the MFP applica-

tion in single- and multiple-source scenarios.12 Note that

even in single source scenarios, adaptive processing may be

desirable to improve localization performance over multi-

ple cycles (generated by the interference pattern of adjacent

modes).

However, CS has a shortcoming: for S unknown sources

present, the number of sparse solutions K required to localize

all sources is K� S.12 Additional ambiguous solutions are

due to the presence of (environmental) mismatch, defined as

a misalignment between the actual source field observed at

the array and the modeled replica vector. Furthermore, sev-

eral sparse solutions might correspond to a single source if it

does not remain in a single range-depth cell for all processed

data snapshots. This problem might also be encountered in

realistic scenarios when jointly processing multiple frequen-

cies and multiple snapshots in order to localize one or more

sources.

An alternative CS implementation, known as sparse

Bayesian learning (SBL),13 offers relief to this shortcom-

ing. SBL has the advantage that it determines sparsity auto-

matically without any user input. Following the CS

approach, SBL also reformulates the parameter estimation

problem as an underdetermined linear problem. The varia-

bles in the problem are treated as Gaussian random vectors

and evidence maximization is performed using Bayesian

analysis to obtain a sparse solution,14 e.g., demonstrated for

plane wave beamforming.15,16 It has been shown that SBL

can be interpreted as an iterative, re-weighted BP algo-

rithm17 and that SBL exhibits similar sparse signal recovery

when compared to the BP method.15,18 BP performance in

the presence of perturbations or mismatch has been

investigated.12,19,20

This paper compares processor localization performance

using simulated and SWellEx-96 data subject to mismatch.

In particular, we investigate processor performance in the

presence of array tilt and when data snapshots are distributed

uniformly between range-depth grid points. SBL perfor-

mance is compared to the non-adaptive Bartlett and adaptive

WNC and MVDR processors. Section II introduces the pro-

cessors followed by a description of data and simulation

processing in Sec. III. Results are presented in Sec. IV fol-

lowed by discussion in Sec. V and conclusions in Sec. VI.a)Electronic mail: gemba@ucsd.edu
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II. PROCESSORS

A. Bartlett, WNC, and MVDR processors

Bartlett is a spatial matched-filter processor which

matches replica vectors aðhÞ (corresponding to the complex

wavefield of a source at frequency f and position h received

at an array of N elements) to the data y,

PBðhÞ ¼ aHðhÞKaðhÞ: (1)

The superscript H denotes the Hermitian operator and PBðhÞ
denotes the Bartlett power at position h (i.e., range and

depth) using normalized replicas vectors [i.e., jjaðhÞjj2 ¼ 1].

The sample covariance matrix (SCM) K 2 C
N�N is obtained

using L snapshots,

K ¼ 1

L

XL

l¼1

yly
H
l : (2)

The snapshot yl 2 C
N

consists of a vector of Fourier coeffi-

cients at a single frequency f obtained via a fast Fourier

transform (FFT) of the lth data segment from each of the

array elements. While Bartlett does not invert K and thus

does not have a minimum number of required snapshots, it

suffers from high sidelobes. Sidelobe suppression is impor-

tant if several sources (or a combination of sources and inter-

ferers) are present.

The WNC processor Pwnc discriminates against other

sources/interferers while offering a degree of robustness in

frequently encountered replica-data mismatch scenarios. The

WNC is versatile because of its ability to adjust its behavior

(thus resolution and sidelobe suppression) from Bartlett to

MVDR (Ref. 21) at the expense of inverting K. To have K

invertible, we require L�N (diagonal loading of K can be

used to mitigate this requirement). The WNC processor is

given by

PwncðhÞ ¼ aH
wðhÞKawðhÞ; (3)

where

aw hð Þ ¼ Kþ �Ið Þ�1
a hð Þ

aH hð Þ Kþ �Ið Þ�1
a hð Þ

:

The adaptive weights awðhÞ correspond to diagonally loaded

MVDR weights and are obtained by solving

min
aw

aH
wðhÞKawðhÞ

subject to aH
wðhÞaðhÞ ¼ 1;

jaH
wðhÞawðhÞj�1 � d2; (4)

for each replica vector at position h. The constraining value

d2 imposes a gain constraint on the adaptive weights and the

white noise gain constraint Gwng such that

d2 � Gwng ¼ jaH
wðhÞawðhÞj�1 < N; (5)

which in practice is normalized and expressed as

10 log10ðd2=NÞ � 0 dB:

The data used to construct the SCM is not normalized,

which requires robust selection of an initialization value �0 for

this barrier optimization problem such that jaH
wðhÞawðhÞj�1

�0

< d2. Since �ðhÞ can span many orders of magnitude, � is

parameterized using the decibel scale. The search routine is

implemented in terms of a singular value decomposition of K

with �0 ¼ 10 log10ðTrðKÞ=NÞ � 30. Tr denotes the trace of a

matrix. The iterative algorithm converges when a selected

constraint is satisfied within 60.1 dB. Thus, PwncðhÞ denotes

the WNC power at position h for a selected (white noise gain)

constraint. The constraint frequently falls within [�6

�2] dB28 and we use a constraint of �3 dB for processing.

The WNC solution approaches the MVDR as � ! 0. In

practice, it is common to load the diagonal of the SCM when

using the MVDR. We approximate the MVDR using a white

noise gain constraint of �20 dB and denote the loaded

MVDR processor by PMVðhÞ. Selecting such a low constraint

essentially bypasses the optimization in Eq. (4) for most can-

didate positions h.

To localize a source, Eqs. (1) and (3) are evaluated at M
range-depth positions or cells h. Computed ambiguity surfa-

ces for F processed frequencies are averaged,

PFðhÞ ¼
XF

f¼1

Pðh; f Þ: (6)

Processing additional frequencies improves source localiza-

tion performance for a weaker source in the presence of a

stronger source and environmental or model mismatch.

B. Sparse Bayesian learning

In this section we summarize the multi-frequency SBL

algorithm, discuss its estimate of the noise, and present a

pseudocode for its implementation.

1. SBL formulation

The lth data snapshot yl can be expressed with an under-

determined system of linear equations

yl ¼ Axl þ nl: (7)

In Eq. (7), A ¼ ½aðh1Þ;…; aðhMÞ� is the dictionary contain-

ing M replica vectors and nl � CNðnlj0; r2INÞ is complex

Gaussian noise. xl is the vector of complex source ampli-

tudes with entries corresponding to the same range-depth

cells as in h. SBL models the unknown source amplitudes as

complex Gaussian random variables with prior density pðxlÞ
¼ CN ðxlj0;CÞ, where C is a diagonal covariance matrix,

i.e., C ¼ diagðc1;…; cMÞ ¼ diagðcÞ. The vector c is the

source power in each range-depth cell h. Since the noise is

Gaussian, the likelihood is expressed as pðyljxl; AÞ
¼ CN ðyljAxl; r2INÞ.

Next we extend the single-frequency SBL approach15,22

to include multiple frequencies.16,23,24 Denote the collection

of L snapshots at the fth frequency as Yf ¼ ½y1;…; yL�. Let

the corresponding collection of source amplitude vectors and

dictionaries be denoted by Xf and Af, respectively. Then
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Yf ¼ Af Xf þ Nf ; f ¼ 1; 2;…;F; (8)

where Nf are additive noise contributions. For approximately

stationary sources, xl,f are assumed independent over time.

Hence, we have

pðXf Þ ¼
YL

l¼1

CN ðxf ;lj0;Cf Þ; f ¼ 1; 2;…;F; (9)

where Cf ¼ diagðcf Þ is the covariance of the source ampli-

tudes at frequency f. We assume that Xf are independent

for F processed frequencies. There is no assumption of

sparsity in the frequency domain, which makes this formula-

tion attractive for localizing a few broadband sources from

many candidate replica vectors. Because vectors contained

in X1;…;XF and N1;…;NF are independent, the joint evi-

dence pðY1;…;YFÞ over all frequencies is

pðY1;…;YFÞ ¼
YF

f¼1

pðYf Þ ¼
YF
f¼1

YL

l¼1

CN ðyf ;lj0;Ryf
Þ;

(10)

where the model covariance Ryf
¼ r2

f Iþ Af Cf A
H
f . To esti-

mate cf (denoted by ĉf ), we maximize the joint evidence

fĉ1 � � � ĉFg ¼ arg max
fc1���cFg

pðY1;…;YFÞ

¼ arg min
fc1���cFg

XF

f¼1

L log jRyf
j þ TrðYH

f R�1
yf

Yf Þ

8<
:

9=
;;

(11)

where j � j denotes the determinant of a matrix. To obtain a

minimum of this objective function, we equate its deriva-

tives to zero,

@

@cf ;m

XF

f¼1

L log jRyf
j þ Tr YH

f R�1
yf

Yf

� �8<
:

9=
; ¼ 0: (12)

This yields the fixed point update rule23,24

ĉnew
f ;m ¼ ĉold

f ;m

jjYH
f R�1

yf
af ;mjj22

L aH
f ;mR�1

yf
af ;m

: (13)

The optimization is performed by iterating through the update

rule in Eq. (13), which converges in practice. At each itera-

tion, an estimate of the noise variance is required (see Sec.

II B 2). The K sparse entries in ĉf correspond to an estimate of

the powers of K sources.

We can form the multi-frequency estimate as

ĉ ¼
XF

f¼1

ĉf : (14)

Similar to Eq. (6), summing F processed ambiguity surfaces

with SBL [Eq. (14)] may improve localization performance

if the sparsity across frequencies is the same. Since ĉf is the

source variance estimate at frequency f, a plot of ĉ can be

interpreted as a broadband ambiguity surface.

An alternate way to enhance sparsity of the solution is

to set C ¼ C1 ¼ � � � ¼ CF. This assumes that Xf has the

same statistical distribution at each frequency. A sparse C
would impose identical sparsity constraints on X1;…;XF.

Maximizing the joint evidence, we have

ĉ ¼ arg min
c

XF

f¼1

L log jRyf
j þ TrðYH

f R�1
yf

Yf Þ

8<
:

9=
;; (15)

where Ryf
¼ r2

f Iþ Af CAH
f . Computing the derivative of the

objective function and equating it to zero gives the update

rule24

ĉnew
m ¼ ĉold

m

XF

f¼1

kYH
f R�1

yf
af ;m k2

2

L
XF

f¼1

aH
f ;mR�1

yf
af ;m

: (16)

Similar to Eq. (14), a plot of ĉ [Eq. (16)] can be interpreted

as a broadband ambiguity surface. The update rule Eq. (16)

is used in our multi-frequency data analysis.

2. SBL noise estimate

Let AM denote the matrix formed by K columns of A

indexed by M, where the set M indicates the location of

non-zero entries of c with cardinality K. We estimate M
from ĉnew by picking the strongest K peaks. The noise vari-

ance r2
f estimate15,16,24,25 is given by

r̂2
f ¼

1

N � K
Tr IN � Af ;MAþf ;M

� �
Kf

� �
; (17)

where AþM denotes the Moore-Penrose pseudo-inverse of the

matrix AM. In scenarios including environmental mismatch,

r̂2
f can be influenced by model mismatch and not closely rep-

resent the actual ambient noise variance.26,27

3. SBL pseudo-code

SBL is implemented as shown in Table I. The unknown

source variance cm is estimated by iterating over the fixed

point update rule in Eq. (16). The iterations are performed

until the error criterion (�) in line 8 is met or if the maximum

number of iterations (Nt) is reached. We assume a single

source, i.e., K¼ 1, for estimating the noise variance. The

algorithm performance was not observed to be sensitive to K
in simulations. This assumption makes the algorithm flexi-

ble, as there is no requirement to know the true number of

sources.

III. DATA SELECTION AND PROCESSING

A. SWellEx-96 data

We use the relatively range-independent SWellEx-96

Event S5 data set12,28–30 recorded on a 64 element vertical
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line array (VLA) sampled at 1500 Hz with N¼ 21 of those

elements used for processing. The surface ship R/V Sproul

traveled with a radial velocity of 2.5 m/s towards the VLA

with closest point of approach (CPA) at approximately 1 km

(Fig. 1). The ship towed a deep and a shallow source, both

projecting different multi-tonal waveforms.

For the 75 min Event S5, we use the deep source at fre-

quencies 166 and 201 Hz for processing. The data are split

into 156 segments, resulting in a single segment length of

29 s. A FFT length of 4096 samples (2.7 s) with 50% overlap

results in L¼ 21 snapshots for each segment with a FFT bin

width of 0.37 Hz. Our algorithm searches the adjacent 62

FFT bins and extracts the FFT value corresponding to the

maximum bin power to accommodate Doppler shift. For the

Bartlett processor, each snapshot is windowed spatially with

a normalized Kaiser window with b¼ 4.7. The adaptive pro-

cessors optimize their own weights.

A delayed copy of the SWellEx-96 Event S5 data is

added to the original SWellEx-96 Event S5 data to construct

a two-source scenario, resulting in a source separation of

1 km. This separation (14 data segments) reduces the number

of segments with two sources present from 156 to 142 and

the start time of the event to approximately 7 min. Source 2

is the weaker source and located farther in range than source

1 (with respect to the VLA from 7 to 61 min). The snapshots

of source 2 are added to the snapshots of source 1: Y ¼ Y1

þ nY2. The source 1 to source 2 power ratio (SSR)

n ¼ 10�3=20jjY1jjF=jjY2jjF , hence source 2 is 3 dB below

the power of source 1. F denotes the Frobenius norm. The

snapshots in Y are used to construct the SCM.

To ensure the sources are not coherent, each snapshot

in Yi ¼ ½y1;…; yL� is multiplied by a random phase prior

to adding the delayed data set to the original data set.

This requirement is necessary for adaptive (MVDR and

WNC) and eigenanalysis methods31 because signal coher-

ence affects processor performance when inverting the

SCM. SBL does not invert the SCM but requires an optimi-

zation procedure [see Eq. (16)].

For the range-independent waveguide geoacoustic

model (Fig. 2), the water depth is 4 m below the deepest ele-

ment of the array at 212 m. The VLA spans the lower half

of the water column and the inter-element spacing is 5.6 m

which corresponds to a design frequency of 133 Hz using a

sound speed of 1488 m/s. The seafloor is composed of a

23.5 m thick sediment layer, overlaying a 800 m thick mud-

stone layer. Replica vectors are computed using the Kraken

normal mode code32 with a range and depth discretization of

50 m and 10 m on a 10 km� 200 m grid, respectively.

While many parameters may contribute to mismatch in

realistic scenarios, array-tilt belongs to the set of important

MFP parameters.29,33 Tilt generally is encountered to some

degree when using vertical line arrays spanning a significant

portion of a shallow water column. Hydrophone

TABLE I. Algorithm 1: Multi-frequency SBL algorithm.

1: Parameters: � ¼ 10�8; Nt ¼ 5000

2: Input: Kf ; Af8f
3: Initialization: cold

m ¼ 1; 8m; r̂2
f ¼ 0:1; 8f

4: for i¼ 1 to Nt

5: Compute: Ryf
¼ r̂2

f Iþ Af C
oldAH

f

6: cnew
m update 8m using Eq. (16)

7: r̂2
f estimate 8f using Eq. (17) with K¼ 1

8: If
jjcnew � coldjj1
jjcoldjj1

< �, break

9: cold ¼ cnew

10: end

11: Output: cnew; r̂2
f 8f

FIG. 1. (Color online) SWellEx-96 Event S5 showing the path of the surface

ship R/V Sproul in blue. The ship towed a deep source at �60 m depth along

roughly a 200 m isobath during the 75 min VLA recording.

FIG. 2. Waveguide with sound speed profile, VLA, and geo-acoustic param-

eters for range-independent SWellEx-96 Event S5. A single element out of

the 22 element subset is excluded from processing.
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displacement due to an array tilt is incorporated into the

Kraken field calculation. The tilted array remains in a

straight line anchored at the bottom.

To estimate the SNR at the array, we use the signal and

a representative noise frequency. For an array, the conven-

tional definition of input SNR is the average element-level

signal power divided by the average noise power. When the

signal is recorded in the presence of noise, we approximate

this definition as

SNR 	 10 log10

Tr Ksþnð Þ
Tr Knð Þ � 1

� �
dBð Þ: (18)

Ksþn refers to the signal plus noise SCM and Kn is the SCM

computed at a neighboring noise frequency.

B. Simulations

To explore processor performance in a controlled envi-

ronment subject to array tilt, we use the SWellEx-96 replica

vectors to simulate a multi-frequency scenario. Source mag-

nitudes are selected such that SSR is 3 dB. Source 2 is the

weaker source and is farther in range relative to source 1 by

1 km. To simulate L¼ 21 snapshots while ensuring that both

sources are incoherent, each source phase is selected inde-

pendently from a uniform distribution [0, 2p) for each snap-

shot. The simulated received data vectors are added,

Y ¼ aðh1ÞxT
1 þ aðh2ÞxT

2 þ N; (19)

where each xi 2 C
L contains L complex amplitudes for the

ith source. As with the actual data, these complex source

amplitudes are modeled as deterministic sequences. The

observations Y ¼ ½y1; :::; yL� are used to construct the SCM

over L snapshots.

Processor performance at a particular frequency is eval-

uated for additive noise (SNR discretization is 1 dB). Here,

array (or average single element) SNR is defined as the ratio

of the power of the weaker source 2 to independent and iden-

tically distributed (i.i.d.) complex Gaussian noise n,

SNR ¼ 10 log10

jjaxjj22
Efjjnjj22g

dBð Þ: (20)

Equation (20) corresponds to the single snapshot SNR,

where a is the source replica and x its complex amplitude.

When simulating L¼ 21 snapshots, the signals are added to

i.i.d. complex Gaussian noise. When processing multiple fre-

quencies, each frequency has the same SNR and is generated

with a different noise seed.

To evaluate processor performance when the source

wavefield does not correspond exactly to a dictionary entry,

we simulate the stationary sources [Eq. (19)] on a more

finely spaced grid of replica vectors (2 m in depth and 10 m

in range). The finely spaced replica set allows each of the

L¼ 21 snapshots to be drawn randomly from 24 different

positions while remaining within 61/2 cell to the grid point

(10 m depth and 50 m range discretization).

Processor performance is measured by comparing the

two dominant peaks found on the ambiguity surface to the

grid point of the weaker source. Comparing both peaks

(rather than deciding which peak corresponds to which

source) is reasonable because processors fail in localizing

the weaker source first.12 The localization statistic PL for the

weaker source is computed by

PL ¼
C

Q
; (21)

where C is the number of correctly found peaks for

Q¼ 1000 simulations.34

IV. RESULTS

A. Simulations

First we compare processor performance using data sim-

ulated with and without array tilt mismatch. Panels in Fig. 3

introduce the two source scenario for SNR 0 dB showing

normalized ambiguity surfaces using L¼ 21 snapshots at a

single frequency (166 Hz). Panels on the left are mismatch

free and Bartlett [Fig. 3(a)] displays many ambiguous posi-

tions competitive to source 2. This poor performance indi-

cates that adaptive processing is required for localizing the

weaker source. WNC �3 dB [panel (b)] and SBL [panel (c)]

localize both sources. Panels (d)–(f) include a mismatch of a

1
 array tilt. The array tilt is included in the data using Eq.

(19), whereas the replica vectors used to localize sources are

computed for a 0
 array tilt. The adaptive processors display

an increased amount of ambiguity but localize the weaker

source. Its power is close to �3 dB in panels (b), (c), and (f),

and at �2.1 dB in panel (e). The strongest sidelobe in panel

FIG. 3. (Color online) Localization for

two simulated sources at 166 Hz and

SNR 0 dB. True positions are indicated

by white squares and each panel is nor-

malized by its respective peak value.

Source 1 is located at 2.5 km with

power 3 dB above source 2 located at

3.5 km. Left panels are mismatch free,

right panels have a data mismatch of

1
 array-tilt: (a), (d) Bartlett; (b), (e)

WNC �3 dB; and (c), (f) SBL.
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(e) at approximately 70 m depth and 8.6 km range is at

�4 dB.

Normalized plots are used to facilitate a visual compari-

son of ambiguity surfaces. However, they give the appear-

ance that sidelobe level increases as mismatch increases

while the mainlobe power remains unchanged. When mis-

match is present, processor output power at the location of

the mainlobe decreases.

To compare processor localization performance of the

weaker source at different SNRs, we compute localization

statistics (Fig. 4) using Eq. (21). The scenario is the same as

in Fig. 3. The single frequency (166 Hz), no mismatch panel

in Fig. 4(a) shows that Bartlett yields poor performance in

localizing the weaker source. MVDR exhibits ideal (PL¼ 1)

performance in localizing the weaker source until a SNR of

5 dB. The WNC �3 dB and SBL have a PL< 1 at a SNR

below �3 and �6 dB, respectively.

Next we draw data snapshots independently from a

more finely spaced grid of replica vectors while sources

remain within a discretization cell. The performance of all

processors degrades [Fig. 4(b)] and SBL exhibits a PL¼ 1 at

SNR above �2 dB. Adding an additional frequency (201 Hz)

helps with localizing the source at reduced SNRs for all

adaptive processors [Fig. 4(c)].

To investigate processor robustness to mismatch, we

include a 1
 array tilt in the data while the other parameters

remain unchanged. Localization statistics [Fig. 4(d)–4(f)]

show that the MVDR exhibits a significant loss in perfor-

mance in all panels, demonstrating that it is not robust to

mismatch. SBL and WNC �3 dB exhibit ideal performance

at SNRs above �3 and 6 dB, respectively, in Fig. 4(d). Their

relative performance is similar to the mismatch-free case.

Processing an additional frequency [panel (f)] is beneficial

due to the reduced performance of all processors when using

only a single frequency [panel (e)] and when data snapshots

do not exactly correspond to the replica vectors used for

localization.

Processor robustness is further investigated for different

degrees of array tilt mismatch (Fig. 5). All data snapshots

are randomly drawn from a finer replica vector mesh located

within respective discretization cells. Using two frequencies

(166 and 201 Hz) increases the processor output power at the

location of source 2 but Bartlett and MVDR display poor

performance. SBL exhibits improved performance when

localizing the quiet source under increased mismatch and at

lower SNRs in panels (a)–(c). Results for SNR 10 dB (not

shown) yield only minor improvements in localizing the

weaker source when compared to Fig. 5(a) for all processors

but the MVDR.

B. SWellEx-96 data

It is useful to estimate the SNR at the VLA of the fre-

quencies emitted by the deep source over the entire Event S5

to allow for a comparison to the simulated data. Figure 6(a)

shows SNR at 166 and 201 Hz using two neighboring noise

FIG. 4. (Color online) Probability of

localizing (PL) the weaker source 2 for

166 Hz [(a), (b), (d), (e)] and two-

frequency (166 and 201 Hz) [(c), (f)].

L¼ 21 data snapshots are drawn ran-

domly from a finer replica vector mesh

for stationary sources in (b), (c), (e),

(f). Left panels are without array-tilt

mismatch, right panels include a 1


array-tilt mismatch.

FIG. 5. (Color online) Probability of localizing (PL) the weaker source using

multi-frequency (166 and 201 Hz) in the presence of array-tilt mismatch at

SNR (a) 0 dB, (b) �5 dB, and (c) �10 dB. Data snapshots are drawn ran-

domly from a finer replica vector mesh for stationary sources.
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frequencies at 161 and 214 Hz, respectively. The theoretical

array gain is 13 dB. Twenty-one data snapshots are used to

estimate the SCM. As the source travels towards the array,

the average element SNR increases and is a maximum of

14 dB at CPA, approximately at 61 min. To be consistent

with results presented in Ref. 12, we plot the x axis in

reverse time.

The tilt with respect to the source-array plane

changes over time [panel (b)]. Correlation is defined as

the normalized inner product of the data snapshot and

best-matching replica vector [see Eqs. (3) and (4) in Ref.

35 for a detailed discussion]. This value is plotted over

time for replica vectors computed with different degrees

of VLA tilt in the source-array plane. Computed curves

follow a similar trend as SNR in panel (a) and it can be

observed that different tilts are dominant at different

times throughout the 75 min event. Most notably, replica

vectors computed with a 1
 tilt perform well over most

of the data set while replica vectors computed with a 0


tilt yield poor performance at CPA. At CPA, the tilt with

respect to the source-array plane is 2
.

The azimuth of the source to the VLA (Fig. 1) as well as

the bearing of the tilted VLA change over time. Source-VLA

azimuth is computed using GPS data and a tilt/heading sen-

sor mounted on the VLA recorded bearing angle with respect

to magnetic north. These data are combined [panel (c)] in

order to visualize the tilt bearing angle with respect to the

source-VLA plane. This angle varies in time from �50
 to

60
. The mismatch is greatest for a 0
 relative bearing angle

when using replica vectors computed with a 0
 tilt. Note that

the top of the array is always tilted away from the source. To

reduce mismatch when processing the entire data set, we

generate replica vectors having a 1
 tilt in the source-array

plane.

Next we investigate processor performance to localize a

weaker source in a scenario subject to array tilt mismatch.

Panels in Fig. 7 show two SWellEx-96 sources located at 2.5

and 3.5 km in range at approximately 48 min into the event.

Left panels use replica vectors with a 0
 tilt, right panels use

replica vectors with a 1
 tilt. The number of ambiguous posi-

tions is reduced in panels (d)–(f) when compared to panels

(a)–(c). Similar to the simulations in Fig. 3, Bartlett [panels

(a), (d)] displays the most ambiguity whereas WNC �3 dB

[panels (b), (e)] and SBL [panels (c), (f)] display less ambi-

guity for source localization. Processing two frequencies

(Fig. 8) slightly reduces the number of ambiguous peaks

competitive in power to sources 1 and 2 to less than 5 for all

but the Bartlett processor.

To demonstrate processor robustness to localizing the

weaker source, we extend our processing in Fig. 8 to the

entire Event S5. We extract the five highest power levels and

corresponding range information for each ambiguity surface.

This data then is displayed as a vertical stripe, containing

only the five power levels in their respective range cells. The

vertical stripes are assembled in temporal order and individ-

ually normalized range-time panels are shown in Fig. 9 for

each processor.

The left panels use replica vectors computed with a 0


array tilt, whereas panels on the right are computed using

replica vectors with a 1
 array tilt. All processors localize

the stronger source 1 such that a track is evident over the dis-

played 75 min event. WNC �3 dB [panel (b)] localizes

source 2 sporadically. It is not evident from panel (d) using

Bartlett that a second source is present due to parallel run-

ning sidelobes. When accounting for a 1
 array tilt, WNC

�3 dB localizes the weaker source 2 over most of the event

FIG. 6. (Color online) (a) SWellEx-96 deep source average element level

SNR. (b) Data correlation for three replica vector tilts and (c) VLA tilt bear-

ing angle with respect to the source-VLA plane. At times, the source inter-

rupted the CW transmission over the 75 min track (most notably at 59, 56,

39, 22, and 18 min).

FIG. 7. (Color online) Localization for

two SWellEx-96 sources at 166 Hz for

data segment 85 of 142. True positions

are indicated by white squares. Replica

vectors are computed with 0
 (left pan-

els) and 1
 (right panels) tilt: (a), (d)

Bartlett; (b), (e) WNC �3 dB, and (c),

(f) SBL. Bartlett displays the most

ambiguity while all other processors

exhibit fewer ambiguous localizations.
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[panel (e)]. Panels (c), (f) demonstrate that SBL localizes the

weaker source at most times using either set of replica vec-

tors when compared to WNC panels (b), (e), respectively.

It is apparent that processor performance differs in

localizing the weaker source in Figs. 9(a)–9(c). To quantify

this difference, we turn to GPS data recorded at the surface

ship. We overlayed the track of the weaker source in panels

(a)–(c) with the groundtruth GPS track and allowed a varia-

tion of 62 range cells at each time step. A processor suc-

cessfully detected the source if it had a single non-zero entry

within these five candidate range cells. Bartlett, WNC

�3 dB, and SBL have 40, 72, and 98 localizations, respec-

tively, over the entire track. SBL localizes the weaker source

at closer distance to CPA when compared to WNC �3 dB,

most notably between 65 and 72 min.

Representative CPU times for WNC �3 dB, SBL and

basis pursuit are shown in Fig. 10. The BP method is imple-

mented using CVX (Ref. 36) for single and multiple

frequencies.12 The benchmark ambiguity surface (using

20� 200 ¼ 4000 replica vectors) is the same as in Fig. 3 but

snapshots are drawn from the more finely spaced grid of rep-

lica vectors. Mismatch increases the time required for SBL

and BP to converge. BP uses a pre-determined regularizer to

compute two sparse solutions rather than determining the

desired regularizer with a walk along the LASSO path. We

average over 100 realizations to estimate CPU time for each

number of snapshots. Single frequency Bartlett results (not

shown) are constant across snapshots with 0.002 s. WNC

�3 dB and SBL CPU time roughly are independent of the

number of snapshots and scale approximately linearly with

the number of frequencies. SBL is slower by a factor of 10

when compared to WNC �3 dB, using either 1 or 2

frequencies.

V. DISCUSSION

Simulation results demonstrate that SBL localizes a

weaker source at lower SNRs than WNC �3 dB in ideal sce-

narios [Fig. 4(a)] and in more realistic single- and multi-

frequency scenarios when snapshots do not correspond

exactly to replica entries [Figs. 4(b) and 4(c)]. These obser-

vations are consistent with CS results implemented using

basis pursuit.12 Results in Figs. 4(d)–4(f) and Fig. 5 indicate

that SBL offers a degree of robustness against mismatch in

the form of array tilt including snapshots drawn from a finer

replica vector mesh while exhibiting improved localization

performance when compared to other processors at low

SNR.

FIG. 8. (Color online) As in Fig. 7 but

using two frequencies (166 and

201 Hz) reduces the ambiguous peaks

competitive in power to source 1 and

source 2 to approximately 5 or less for

WNC �3 dB and SBL.

FIG. 9. Multi-frequency (166 and 201 Hz) range localization of two sources for the SWellEx-96 Event S5. For each of the 142 processed segments/ambiguity

surfaces (Fig. 8 shows No. 85), five peaks corresponding to the highest power levels are plotted. Replica vectors are computed with 0
 (left panels) and 1


(right panels) tilt: (a), (d) Bartlett; (b), (e) WNC �3 dB; and (c), (f) SBL.

3418 J. Acoust. Soc. Am. 141 (5), May 2017 Gemba et al.



The SWellEx-96 data set includes mismatch in the form

of array tilt (Fig. 6) which is exploited to demonstrated pro-

cessor localization robustness. SBL [Fig. 9(c)] exhibits

improved performance over the entire track when compared

to WNC [Fig. 9(b)] in localizing a weaker source in the pres-

ence of a stronger source. SBL also offers improved localiza-

tion performance for the weaker source close to CPA at

61 min when compared to panels (a), (b). This observation is

supported by simulations in Fig. 5, showing that SBL can

accommodate mismatch in the form of array tilt up to 2
.
The adaptive processors perform well in localizing the

weaker source when this mismatch is within 61
 [Figs. 9(e)

and 9(f)]. Of course, in addition to tilt, the data contains a

modest amount of unknown environmental mismatch. It is

noteworthy that ambiguous solutions in panel (f) are not as

connected when compared to Bartlett [panel (d)] and WNC

[panel (e)], which further improves visualization of the track.

A similar argument can be made when comparing individual

panels on the left, but SBL displays a small amount of

ambiguous, connected peaks.

Snapshots used to construct the SCM cover a time inter-

val of 29 s. In this interval, the source moves approximately

70 m which is more than one range discretization cell (50 m).

Previous results using the basis pursuit method12 indicate

that processing snapshots and or multiple frequencies corre-

sponding to adjacent cells yield adjacent sparse solutions.

Panels in Figs. 8(b), 8(c), 8(e), and 8(f) display significant

processor output power in two adjacent cells corresponding

to the location of the stronger source. Using BP, the number

of sparse solutions required to localize all sources is

unknown since multiple solutions might correspond to a sin-

gle source. This problem is amplified in scenarios with mis-

match: the processor identifies false locations before both

sources are localized [Fig. 8(c) displays many ambiguous

positions similar in power to both sources]. SBL requires no

a priori knowledge of number of sparse solutions, automati-

cally determines sparsity, and therefore sidesteps this prob-

lem entirely.

It is noteworthy that some SBL ambiguous solutions

correspond to ambiguous WNC solutions [e.g., Figs. 7(b)

and 7(c)]. WNC yielded good performance using a constant

tuning parameter of �3 dB and WNC generally performs

well when selecting a value within [�6 �2] dB. However, it

is difficult to assess how to select the optimum white noise

gain constraint to localize the weaker source.12 In contrast,

SBL explains the data by use of an optimization without

being constrained by a similar tuning parameter.

On average, Bartlett, WNC, and SBL require 3, 25, and

375 s, respectively, to compute all multi-frequency ambigu-

ity surfaces used to construct a respective panel in Fig. 9.

Our MFP toolbox is implemented using MATLAB whereas the

142 data segments are parallelized on 25 processors. The

SBL algorithm can be parallelized over frequency except for

the update rule in Eq. (16) to offset SBL’s frequency depen-

dent CPU time (Fig. 10). BP’s execution time increases qua-

dratically with the number of snapshots while SBL’s

execution time largely is snapshot independent.

VI. CONCLUSIONS

We demonstrated that sparse Bayesian learning (SBL)

behaves similar to an adaptive processor and outperforms

WNC �3 dB when localizing a weaker source in the presence

of a stronger source in simulations and with the SWellEx-96

data set. Furthermore, SBL is robust to mismatch in the form

of array tilt and additional, modest (unknown) data-replica

mismatch. Unlike other sparse methods, SBL automatically

determines sparsity. SBL’s processing time is independent of

the number of snapshots and it is a factor 10 slower when

compared to the WNC.
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